zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sufficient matrices and the linear complementarity problem. (English) Zbl 0674.90092
A new class of matrices, related to the linear complementarity problem (LCP), the so called “row sufficient” matrices, are introduced. Respectively, the transpose of such a matrix is called “column sufficient”. Two important results are proved: (i) A matrix $M$ is row sufficient iff for every $q\in \Bbb R^n$ any Kuhn-Tucker-point of the associated quadratic program solves the LCP $(q,M)$; (ii) $M$ is column sufficient iff for every $q\in \Bbb R^n$ the LCP $(q,M)$ has a convex solution set. The connections with other well-known matrix classes in linear complementarity theory are also discussed.
Reviewer: E.Iwanow

MSC:
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
15B57Hermitian, skew-Hermitian, and related matrices
WorldCat.org
Full Text: DOI
References:
[1] Adler, I.; Gale, D.: On the solutions of the positive semi-definite complementarity problem. Technical report ORC 75-12 (1975)
[2] Aganagić, M.; Cottle, R. W.: A constructive characterization of Q0-matrices with nonnegative principal minors. Math. programming 37, 223-231 (1987) · Zbl 0618.90091
[3] Cottle, R. W.: Note on a fundamental theorem in quadratic programming. J. soc. Indust. and appl. Math. 12, 663-665 (1964) · Zbl 0128.39701
[4] Cottle, R. W.: Nonlinear programs with positively bounded Jacobians. J. soc. Indust. and appl. Math. 14, 147-158 (1966) · Zbl 0158.18903
[5] Cottle, R. W.: On a problem in linear inequalities. J. London math. Soc. 43, 378-384 (1968) · Zbl 0181.04001
[6] Cottle, R. W.; Dantzig, G. B.: Complementary pivot theory of mathematical programming. Linear algebra appl. 1, 103-125 (1968) · Zbl 0155.28403
[7] Cottle, R. W.; Pang, J. -S.: On solving linear complementarity problems as linear programs. Math. programming stud. 7, 88-107 (1978) · Zbl 0381.90072
[8] Eaves, B. C.: The linear complementarity problem in mathematical programming. Ph.d. thesis (1969) · Zbl 0211.49301
[9] Eaves, B. C.: The linear complementarity problem. Management sci. 17, 612-634 (1971) · Zbl 0228.15004
[10] Fiedler, M.; Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak math. J. 12, 382-400 (1962) · Zbl 0131.24806
[11] Fiedler, M.; Pták, V.: Some generalizations of positive definiteness and monotonicity. Numer. math. 9, 163-172 (1966) · Zbl 0148.25801
[12] Frank, M.; Wolfe, P.: An algorithm for quadratic programming. Naval res. Logist. quart. 3, 95-110 (1956)
[13] Gale, D.; Nikaido, H.: The Jacobian matrix and global univalence of mappings. Math. ann. 159, 81-93 (1965) · Zbl 0158.04903
[14] Ingleton, A. W.: A problem in linear inequalities. Proc. London math. Soc. 16, 519-536 (1966) · Zbl 0166.03005
[15] Ingleton, A. W.: The linear complementarity problem. J. London math. Soc. 2, 330-336 (1970) · Zbl 0196.05401
[16] Jansen, M. J. M.: On the structure of the solution set of a linear complementarity problem. Cahiers centre études rech. Opér. 25, 41-48 (1983)
[17] Kuhn, H. W.; Tucker, A. W.: Nonlinear programming. Second Berkeley symposium on mathematical statistics and probability, 481-492 (1951)
[18] Lemke, C. E.: Bimatrix equilibrium points and mathematical programming. Management sci. 11, 681-689 (1965) · Zbl 0139.13103
[19] Mohan, S. R.: The linear complementarity problem with a Z-matrix. Ph.d. thesis (1978) · Zbl 0388.90078
[20] Mohan, S. R.: Existence of solution rays for linear complementarity problems with Z-matrices. Math. programming stud. 7, 108-119 (1978) · Zbl 0388.90078
[21] Murty, K. G.: On the number of solutions to the complementarity problem and spanning properties of complementary cones. Linear algebra appl. 5, 65-108 (1972) · Zbl 0241.90046
[22] Rockafellar, R. T.: Convex analysis. (1970) · Zbl 0193.18401
[23] Samelson, H.; Thrall, R. M.; Wesler, O.: A partition theorem for Euclidean n-space. Proc. amer. Math. soc. 9, 805-807 (1958) · Zbl 0117.37901