×

Multi-physics modelling of a compliant humanoid robot. (English) Zbl 1404.70025

Summary: We present a multibody simulator being used for compliant humanoid robot modelling and report our reasoning for choosing the settings of the simulator’s key features. First, we provide a study on how the numerical integration speed and accuracy depend on the coordinate representation of the multibody system. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and arms). Our second contribution is a full electromechanical model of the inner dynamics of the compliant actuators embedded in the COMAN robot, since joints’ compliance is needed for the robot safety and energy efficiency. Third, we discuss the different approaches for modelling contacts and selecting an appropriate contact library. The recommended solution is to couple our simulator with an open-source contact library offering both accurate and fast contact modelling. The simulator performances are assessed by two different tasks involving contacts: a bimanual manipulation task and a squatting tasks. The former shows reliability of the simulator. For the latter, we report a comparison between the robot behaviour as predicted by our simulation environment, and the real one.

MSC:

70E60 Robot dynamics and control of rigid bodies
70E55 Dynamics of multibody systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Tsagarakis, N.G.; Morfey, S.; Cerda, G.M.; Zhibin, L.; Caldwell, D.G., Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control, ICRA
[2] Tsagarakis, N.G.; Morfey, S.; Dallali, H.; Medrano-Cerda, G.A.; Caldwell, D.G., An asymmetric compliant antagonistic joint design for high performance mobility, IROS
[3] Docquier, N.; Poncelet, A.; Fisette, P., ROBOTRAN: a powerful symbolic generator of multibody models, Mech. Sci., 4, 199-219, (2013)
[4] Dallali, H.; Mosadeghzad, M.; Medrano-Cerda, G.; Docquier, N.; Kormushev, P.; Tsagarakis, N.; Li, Zh.; Caldwell, D., Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach, ICM
[5] Sherman, M.A.; Seth, A.; Delp, S.L., Simbody: multibody dynamics for biomedical research, Proc. IUTAM, 2, 241-261, (2011)
[6] Noot, N.; Colasanto, L.; Barrea, A.; Kieboom, J.; Ronsse, R.; Ijspeert, A.J., Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot, IROS
[7] Dallali, H.; Mosadeghzad, M.; Medrano-Cerda, G.; Vo-Gia, L.; Tsagarakis, N.; Caldwell, D.; Gesino, M., Designing a high performance humanoid robot based on dynamic simulation, EMS
[8] Smith, R.: Open Dynamics Engine (ODE). http://www.ode.org/. Accessed 21 June 2016
[9] Mistry, M.; Schaal, S.; Yamane, K., Inertial parameter estimation of floating base humanoid systems using partial force sensing, 492-497, (2009)
[10] Sentis, L.: Synthesis and Control of Whole-Body Behaviors in Humanoid Systems. PhD Thesis, Stanford University (2007)
[11] Fitzpatrick, P.; Metta, G.; Natale, L., Towards long-lived robot genes, Robot. Auton. Syst., 56, 29-45, (2008)
[12] Habra, T.; Dallali, H.; Cardellino, A.; Natale, L.; Tsagarakis, N.; Fisette, P.; Ronsse, R., Robotran-YARP interface: a framework for real-time controller developments based on multibody dynamics simulations, 147-164, (2016), Berlin
[13] Ivaldi, S.; Peters, J.; Padois, V.; Nori, F., Tools for dynamics simulation of robots: a survey based on user feedback, 842-849, (2014)
[14] Boeing, A.; Bräunl, Th., Evaluation of real-time physics simulation systems, 281-288, (2007), New York
[15] Todorov, E.; Erez, T.; Tassa, Y., Mujoco: a physics engine for model-based control, IROS
[16] Samin, J-C., Fisette, P.: Symbolic Modeling of Multibody Systems. Kluwer Academic Publishers, Dordrecht (2003) · Zbl 1044.70001
[17] Bullet Physics library. http://bulletphysics.org/. Accessed 21 June 2016
[18] Van den Bergen, G., Gregorius, D.: Game Physics Pearls. AK Peters, Wellesley (2010)
[19] Manual, O.D.E., Wiki: http://ode-wiki.org/wiki/index.php?title=Manual/. Accessed 21 June 2016
[20] Maxima, a Computer Algebra System. http://maxima.sourceforge.net/. Accessed 21 June 2016
[21] Khalil, W.; Vijayalingam, A.; Khomutenko, B.; Mukhanov, I.; Lemoine, Ph.; Ecorchard, G., Opensymoro: an open-source software package for symbolic modelling of robots, 1206-1211, (2014)
[22] MapleSim—High Performance Physical Modeling and Simulation—Technical Computing Software. http://www.maplesoft.com/products/maplesim/index1.aspx. Accessed 21 June 2016
[23] Spong, M.W., Modeling and control of elastic joint robots, J. Dyn. Syst. Meas. Control, 109, 310-318, (1987) · Zbl 0656.93052
[24] Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Berlin (2008) · Zbl 1171.93300
[25] Blau, P.J.: Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton (2009)
[26] Chatterjee, A.; Ruina, A., A new algebraic rigid body collision law based on impulse space considerations, J. Appl. Mech., 65, 939-951, (1998)
[27] Brogliato, B.; ten Dam, A.; Paoli, L.; Génot, F.; Abadie, M., Numerical simulation of finite dimensional multibody nonsmooth mechanical systems, Appl. Mech. Rev., 55, 107-150, (2002)
[28] Drumwright, E.; Shell, D.A., An evaluation of methods for modeling contact in multibody simulation, ICRA
[29] Hippmann, G., An algorithm for compliant contact between complexly shaped bodies, Multibody Syst. Dyn., 12, 345-362, (2004) · Zbl 1174.70309
[30] Pérez-González, A.; Fenollosa-Esteve, C.; Sancho-Bru, J.L.; Sánchez-Marín, F.T.; Vergara, M.; Rodríguez-Cervantes, P.J., A modified elastic foundation contact model for application in 3D models of the prosthetic knee, Med. Eng. Phys., 30, 387-398, (2008)
[31] Simbody: Multibody Physics API. https://simtk.org/projects/simbody. Accessed 21 June 2016 · Zbl 1174.70309
[32] Negrello, F.; Garabini, M.; Catalano, M.G.; Kryczka, P.; Choi, W.; Caldwell, D.; Bicchi, A.; Tsagarakis, N.G., WALK-MAN humanoid lower body design optimization for enhanced physical performance, ICRA
[33] Simulators of the COMAN and WALK-MAN humanoid robots. https://gitlab.robotran.be/walkman/coman_robotran/, https://gitlab.robotran.be/walkman/walkman_robotran/. Accessed 21 June 2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.