Thorner, Jesse; Zaman, Asif An explicit bound for the least prime ideal in the Chebotarev density theorem. (English) Zbl 1432.11167 Algebra Number Theory 11, No. 5, 1135-1197 (2017). Summary: We prove an explicit version of Weiss’ bound on the least norm of a prime ideal in the Chebotarev density theorem, which is a significant improvement on the work of Lagarias, Montgomery, and Odlyzko. As an application, we prove the first explicit, nontrivial, and unconditional upper bound for the least prime represented by a positive-definite primitive binary quadratic form. We also consider applications to elliptic curves and congruences for the Fourier coefficients of holomorphic cuspidal modular forms. Cited in 2 ReviewsCited in 14 Documents MSC: 11R44 Distribution of prime ideals 11M41 Other Dirichlet series and zeta functions 14H52 Elliptic curves Keywords:Chebotarev density theorem; least prime ideal; Linnik’s theorem; binary quadratic forms; elliptic curves; modular forms; log-free zero density estimate PDF BibTeX XML Cite \textit{J. Thorner} and \textit{A. Zaman}, Algebra Number Theory 11, No. 5, 1135--1197 (2017; Zbl 1432.11167) Full Text: DOI arXiv OpenURL References: [1] 10.1016/j.jnt.2014.06.008 · Zbl 1317.11115 [2] 10.1090/S0025-5718-96-00763-6 · Zbl 0853.11077 [3] ; Deligne, Séminaire Bourbaki, 1968/1969. Séminaire Bourbaki, 1968/1969. Lecture Notes in Math., 175 (1971) [4] ; Duke, Acta Arith., 52, 203 (1989) [5] ; Fogels, Acta Arith., 7, 87 (1962) [6] ; Fogels, Acta Arith., 7, 131 (1962) [7] 10.1007/BF01403187 · Zbl 0219.10048 [8] ; Golod, Izv. Akad. Nauk SSSR Ser. Mat., 28, 261 (1964) [9] 10.1016/0022-314X(78)90010-0 · Zbl 0382.10031 [10] 10.1112/plms/s3-64.2.265 · Zbl 0739.11033 [11] 10.1007/978-0-8176-4532-8_5 · Zbl 1185.11069 [12] 10.1090/coll/053 [13] ; Jutila, Ann. Acad. Sci. Fenn. Ser. A I Math., 471, 1 (1970) [14] 10.7146/math.scand.a-11701 · Zbl 0363.10026 [15] 10.1142/S1793042112500078 · Zbl 1279.11110 [16] 10.1016/j.jnt.2011.09.002 · Zbl 1287.11130 [17] ; Kolesnik, Studies in pure mathematics, 427 (1983) [18] 10.2140/pjm.2002.207.411 · Zbl 1129.11316 [19] ; Lagarias, Algebraic number fields : L-functions and Galois properties, 409 (1977) [20] 10.1007/BF01390234 · Zbl 0401.12014 [21] 10.1090/S0025-5718-2015-02925-1 · Zbl 1326.11058 [22] 10.2140/ant.2012.6.1061 · Zbl 1321.11105 [23] ; Linnik, Rec. Math. [Mat. Sbornik] N.S., 15(57), 139 (1944) [24] ; Linnik, Rec. Math. [Mat. Sbornik] N.S., 15(57), 347 (1944) [25] 10.1007/BF01897022 · Zbl 0135.11102 [26] 10.1007/BF01390348 · Zbl 0386.14009 [27] 10.1515/form.1994.6.555 · Zbl 0834.11045 [28] 10.2307/2374502 · Zbl 0644.10018 [29] 10.1007/s002220050191 · Zbl 0930.11022 [30] 10.1007/BF01162949 · Zbl 0092.27703 [31] ; Serre, Inst. Hautes Études Sci. Publ. Math., 323 (1981) [32] 10.1007/BF01405166 · Zbl 0278.12005 [33] 10.1515/crll.1983.338.56 · Zbl 0492.12008 [34] 10.4064/aa150-1-4 · Zbl 1248.11067 [35] 10.1016/j.jnt.2015.10.003 · Zbl 1406.11093 [36] 10.1142/S1793042116501335 · Zbl 1352.11096 [37] 10.7169/facm/1651 · Zbl 1427.11123 [38] 10.1090/conm/655/13206 · Zbl 1394.11050 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.