×

zbMATH — the first resource for mathematics

Extraction of gravitational waves in numerical relativity. (English) Zbl 1366.83020
Summary: A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to “extract” the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

MSC:
83C35 Gravitational waves
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
Software:
Cactus; NINJA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] etal., Observation of gravitational waves from a binary black hole merger, Phys Rev Lett, 116, pp., (2016)
[2] Collisions of boosted black holes: perturbation theory prediction of gravitational radiation, Phys Rev D, 50, pp., (1994)
[3] Reading off gravitational radiation waveforms in numerical relativity calculations: matching to linearised gravity, Phys Rev D, 37, 318-332, (1988)
[4] Gauge invariant treatment of gravitational radiation near the source: analysis and numerical simulations, Phys Rev D, 42, 2585-2594, (1990)
[5] Abrahams A, Price RH (1996a) Black-hole collisions from Brill-Lindquist initial data: predictions of perturbation theory. Phys Rev D 53:1972-1976. doi:10.1103/PhysRevD.53.1972
[6] Abrahams AM, Price RH (1996b) Applying black hole perturbation theory to numerically generated spacetimes. Phys Rev D 53:1963. doi:10.1103/PhysRevD.53.1963
[7] Numerically generated black hole spacetimes: interaction with gravitational waves, Phys Rev D, 45, 3544-3558, (1992)
[8] Calculation of gravitational wave forms from black hole collisions and disk collapse: applying perturbation theory to numerical space-times, Phys Rev D, 51, 4295-4301, (1995)
[9] etal., Gravitational wave extraction and outer boundary conditions by perturbative matching, Phys Rev Lett, 80, 1812-1815, (1998)
[10] Adamo TM, Newman ET, Kozameh CN (2012) Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation. Living Rev Relativ 15:lrr-2012-1. doi:10.12942/lrr-2012-1. http://www.livingreviews.org/lrr-2012-1, arXiv:0906.2155
[11] Alcubierre M (2008) Introduction to 3+1 numerical relativity, international series of monographs on physics, vol 140. Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780199205677.001.0001 · Zbl 1140.83002
[12] Conformal and covariant formulation of the Z4 system with constraint-violation damping, Phys Rev D, 85, pp., (2012)
[13] Constraint damping of the conformal and covariant formulation of the Z4 system in simulations of binary neutron stars, Phys Rev D, 88, pp., (2013)
[14] Allen G, Camarda K, Seidel E (1998) 3D black hole spectroscopy: determining waveforms from 3D excited black holes. ArXiv e-prints arXiv:gr-qc/9806036
[15] Allen G, Goodale T, Seidel E (1999) The cactus computational collaboratory: Enabling technologies for relativistic astrophysics, and a toolkit for solving pdes by communities in science and engineering. In: The seventh symposium on the frontiers of massively parallel computation (frontiers’99). IEEE, Los Alamitos, pp 36-41 · Zbl 1250.83027
[16] Excitation of the odd parity quasinormal modes of compact objects, Phys Rev D, 60, pp., (1999)
[17] The collision of two black holes, Phys Rev Lett, 71, 2851-2854, (1993)
[18] The head-on collision of two equal mass black holes, Phys Rev D, 52, 2044-2058, (1995)
[19] Head-on collision of two black holes: comparison of different approaches, Phys Rev D, 52, 4462-4480, (1995)
[20] Republication of: the dynamics of general relativity, Gen Relativ Gravit, 40, 1997-2027, (2008) · Zbl 1152.83320
[21] etal., Testing gravitational-wave searches with numerical relativity waveforms: results from the first numerical injection analysis (NINJA) project, Class Quantum Gravity, 26, pp., (2009)
[22] Gravitational wave extraction based on Cauchy-characteristic extraction and characteristic evolution, Class Quantum Gravity, 22, 5089-5108, (2005) · Zbl 1092.83005
[23] Strategies for the characteristic extraction of gravitational waveforms, Phys Rev D, 79, pp., (2009)
[24] Babiuc MC, Szilágyi B, Winicour J, Zlochower Y (2011a) Characteristic extraction tool for gravitational waveforms. Phys Rev D 84:044057. doi:10.1103/PhysRevD.84.044057. arXiv:1011.4223 · Zbl 1219.83032
[25] Babiuc MC, Winicour J, Zlochower Y (2011b) Binary black hole waveform extraction at null infinity. Class Quantum Gravity 28:134006. doi:10.1088/0264-9381/28/13/134006. arXiv:1106.4841 · Zbl 1219.83032
[26] Testing the well-posedness of characteristic evolution of scalar waves, Class Quantum Gravity, 31, pp., (2014) · Zbl 1292.83007
[27] Gravitational-wave emission from rotating gravitational collapse in three dimensions, Phys Rev Lett, 94, pp., (2005) · Zbl 1196.83026
[28] Accurate simulations of the dynamical bar-mode instability in full general relativity, Phys Rev D, 75, pp., (2007)
[29] Gravitational-wave extraction from neutron stars oscillations: comparing linear and nonlinear techniques, Phys Rev D, 79, pp., (2009)
[30] Making use of geometrical invariants in black hole collisions, Phys Rev D, 62, pp., (2000)
[31] Nonlinear and perturbative evolution of distorted black holes: odd-parity modes, Phys Rev D, 62, pp., (2000)
[32] Gravitational waves from black hole collisions via an eclectic approach, Class Quantum Gravity, 17, l149-l156, (2000) · Zbl 0977.83037
[33] Plunge waveforms from inspiralling binary black holes, Phys Rev Lett, 87, pp., (2001)
[34] The lazarus project: a pragmatic approach to binary black hole evolutions, Phys Rev D, 65, pp., (2002)
[35] Modeling gravitational radiation from coalescing binary black holes, Phys Rev D, 65, pp., (2002)
[36] Gravitational wave extraction from an inspiraling configuration of merging black holes, Phys Rev Lett, 96, pp., (2006)
[37] Evolution of 3d boson stars with waveform extraction, Class Quantum Gravity, 23, 2631-2652, (2006) · Zbl 1102.83012
[38] Radiation fields in the Schwarzschild background, J Math Phys, 14, 7-19, (1973)
[39] Einstein equations in the null quasispherical gauge, Class Quantum Gravity, 14, 2185-2194, (1997) · Zbl 0877.53059
[40] Numerical methods for the Einstein equations in null quasi-spherical coordinates, SIAM J Sci Comput, 22, 917-950, (2000) · Zbl 0973.83004
[41] Numerical integration of einstein’s field equations, Phys Rev D, 59, pp., (1999) · Zbl 1250.83004
[42] Baumgarte TW, Shapiro SL (2010) Numerical relativity: solving Einstein’s equations on the computer. Cambridge University Press, Cambridge. doi:10.1017/cbo9781139193344 · Zbl 1198.83001
[43] Towards wave extraction in numerical relativity: foundations and initial-value formulation, Phys Rev D, 72, pp., (2005)
[44] Constraint violation in free evolution schemes: comparing bssnok with a conformal decomposition of z4, Phys Rev D, 81, pp., (2010)
[45] Some aspects of the characteristic initial value problem in numerical relativity, 20-33, (1992), Cambridge
[46] Numerical relativity: combining the Cauchy and characteristic initial value problem, Class Quantum Gravity, 10, 333-341, (1993) · Zbl 0796.65145
[47] Linearized solutions of the Einstein equations within a Bondi-Sachs framework, and implications for boundary conditions in numerical simulations, Class Quantum Gravity, 22, 2393-2406, (2005) · Zbl 1077.83013
[48] New approach to calculating the news, Phys Rev D, 68, pp., (2003)
[49] The gravitational wave strain in the characteristic formalism of numerical relativity, Gen Rel Gravit, 46, pp., (2014) · Zbl 1288.83015
[50] Numerical relativity on a transputer array, Class Quantum Gravity, 7, l23-l27, (1990) · Zbl 1051.78001
[51] Cauchy-characteristic matching: a new approach to radiation boundary conditions, Phys Rev Lett, 76, 4303-4306, (1996) · Zbl 0955.83503
[52] Cauchy-characteristic extraction in numerical relativity, Phys Rev D, 54, 6153-6165, (1996)
[53] Bishop NT, Gómez R, Holvorcem PR, Matzner RA, Papadopoulos P, Winicour J (1997a) Cauchy-characteristic evolution and waveforms. J Comput Phys 136:140-167. doi:10.1006/jcph.1997.5754
[54] Bishop NT, Gómez R, Lehner L, Maharaj M, Winicour J (1997b) High-powered gravitational news. Phys Rev D 56:6298-6309. doi:10.1103/PhysRevD.56.6298. arXiv:gr-qc/9708065
[55] Cauchy-characteristic matching, 383-408, (1999), Dordrecht · Zbl 0960.83004
[56] The incorporation of matter into characteristic numerical relativity, Phys Rev D, 60, pp., (1999)
[57] Characteristic initial data for a star orbiting a black hole, Phys Rev D, 72, pp., (2005)
[58] Initial data transients in binary black hole evolutions, Class Quantum Gravity, 28, pp., (2011) · Zbl 1222.83092
[59] Blanchet L (2014) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:lrr-2014-2. doi:10.12942/lrr-2014-2. http://www.livingreviews.org/lrr-2014-2, arXiv:1310.1528 · Zbl 1316.83003
[60] Post-newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity, Mon Not R Astron Soc, 242, 289-305, (1990) · Zbl 0694.76051
[61] Bona C, Palenzuela-Luque C (2009) Elements of numerical relativity and relativistic hydrodynamics: from Einstein’s equations to black hole simulations, vol 673, lecture notes in physics. Springer, Berlin. doi:10.1007/b135928 · Zbl 1176.85001
[62] General-covariant evolution formalism for numerical relativity, Phys Rev D, 67, pp., (2003)
[63] Symmetry-breaking mechanism for the Z4 general-covariant evolution system, Phys Rev D, 69, pp., (2004)
[64] Bona C, Palenzuela-Luque C, Bona-Casas C (2009) Elements of numerical relativity and relativistic hydrodynamics: from Einstein’s equations to astrophysical simulations, vol 783, 2nd edn, lecture notes in physics. Springer, Berlin · Zbl 1176.85001
[65] Gravitational waves in general relativity, Nature, 186, pp., (1960) · Zbl 0087.42504
[66] Gravitational waves in general relativity VII. waves from axi-symmetric isolated systems, Proc R Soc Lond Ser A, 269, 21-52, (1962) · Zbl 0106.41903
[67] Boyle M (2016) Transformations of asymptotic gravitational-wave data. Phys Rev D 93:084031. doi:10.1103/PhysRevD.93.084031. arXiv:1509.00862
[68] Extrapolating gravitational-wave data from numerical simulations, Phys Rev D, 80, pp., (2009)
[69] Cactus (2016) The Cactus code. URL http://www.cactuscode.org/, project homepage
[70] Three-dimensional simulations of distorted black holes: comparison with axisymmetric results, Phys Rev D, 59, pp., (1999)
[71] The imposition of Cauchy data to the Teukolsky equation I: the nonrotating case, Phys Rev D, 58, pp., (1998)
[72] Second order gauge invariant gravitational perturbations of a Kerr black hole, Phys Rev D, 59, pp., (1999)
[73] The imposition of Cauchy data to the Teukolsky equation II: numerical comparison with the zerilli-moncrief approach to black hole perturbations, Phys Rev D, 58, pp., (1998)
[74] The imposition of Cauchy data to the Teukolsky equation III: the rotating case, Phys Rev D, 58, pp., (2000)
[75] The lazarus project II: space-like extraction with the quasi-kinnersley tetrad, Phys Rev D, 73, pp., (2006)
[76] Comparison of numerical and post-Newtonian waveforms for generic precessing black-hole binaries, Phys Rev D, 79, pp., (2009)
[77] CFC+: improved dynamics and gravitational waveforms from relativistic core collapse simulations, Astron Astrophys, 439, 1033-1055, (2005)
[78] The gravitational perturbations of the Kerr black hole. I. the perturbations in the quantities which vanish in the stationary state, Proc R Soc Lond, 358, 138-156, (1978)
[79] Chandrasekhar S (1983) The mathematical theory of black holes, the international series of monographs on physics, vol 69. Clarendon, Oxford
[80] The quasi-normal modes of the Schwarzschild black hole, Proc R Soc Lond, 344, 441-452, (1975)
[81] Combining Cauchy and characteristic numerical evolutions in curved coordinates, Class Quantum Gravity, 11, 1463-1468, (1994)
[82] Combining Cauchy and characteristic codes. i. the vacuum cylindrically symmetric problem, Phys Rev D, 52, 6863-6867, (1995)
[83] etal., Boosted three-dimensional black-hole evolutions with singularity excision, Phys Rev Lett, 80, 2512-2516, (1998)
[84] Numerical relativity. II. numerical methods for the characteristic initial value problem and the evolution of the vacuum field equations for space-times with two Killing vectors, Proc R Soc Lond Ser A, 386, 373-391, (1983) · Zbl 0541.65090
[85] On the shear instability in relativistic neutron stars, Class Quantum Gravity, 27, pp., (2010) · Zbl 1190.85001
[86] Radiation from collapsing relativistic stars I. linearized odd-parity radiation, Astrophys J, 224, pp., (1978)
[87] Radiation from collapsing relativistic stars II. linearized even-parity radiation, Astrophys J, 230, 870-892, (1979)
[88] Combining Cauchy and characteristic codes. III. the interface problem in axial symmetry, Phys Rev D, 54, 4919-4928, (1996)
[89] Combining Cauchy and characteristic codes. IV. the characteristic field equations in axial symmetry, Phys Rev D, 56, 772-784, (1997)
[90] Cauchy-characteristic matching for a family of cylindrical solutions possessing both gravitational degrees of freedom, Class Quantum Gravity, 17, 3157-3170, (2000) · Zbl 0974.83006
[91] Gravitational recoil during binary black hole coalescence using the effective one body approach, Phys Rev D, 73, pp., (2006)
[92] Damour T, Nagar A (2016) Astrophysical black holes. In: Haardt F, Gorini V, Moschella U, Treves A, Colpi M (eds) The effective-one-body approach to the general relativistic two body problem, vol 905, lecture notes in physics. Springer, Berlin, pp 273-312. doi:10.1007/978-3-319-19416-5_7
[93] de Felice F, Clarke CJS (1990) Relativity on curved manifolds. Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge
[94] A dynamical system approach for the Bondi problem, Int J Mod Phys A, 24, 1700-1704, (2009) · Zbl 1170.83371
[95] Dimmelmeier H, Ott CD, Janka H, Marek A, Müller E (2007) Generic gravitational-wave signals from the collapse of rotating stellar cores. Phys Rev Lett 98:251101. doi:10.1103/PhysRevLett.98.251101. arXiv:astro-ph/0702305
[96] Combining Cauchy and characteristic codes. II. the interface problem for vacuum cylindrical symmetry, Phys Rev D, 52, 6868-6881, (1995) · Zbl 1291.34094
[97] Combining Cauchy and characteristic codes. V. Cauchy-characteristic matching for a spherical spacetime containing a perfect fluid, Phys Rev D, 58, pp., (1998)
[98] Näherungsweise integration der feldgleichungen der gravitation, Sitzungsber K Preuss Akad Wiss and Phys-Math Kl, 1916, 688-696, (1916) · JFM 46.1293.02
[99] Über gravitationswellen, Sitzungsber K Preuss Akad Wiss, 1918, 154-167, (1918) · JFM 46.1295.02
[100] How black holes get their kicks: gravitational radiation recoil revisited, Astrophys J, 607, l5-l8, (2004)
[101] Scattering of particles by neutron stars: time evolutions for axial perturbations, Phys Rev D, 62, pp., (2000)
[102] A hybrid approach to black hole perturbations from extended matter sources, Phys Rev D, 73, pp., (2006)
[103] Determining gravitational radiation from Newtonian self-gravitating systems, Astrophys J, 351, 588-600, (1990)
[104] Wave zone extraction of gravitational radiation in three-dimensional numerical relativity, Phys Rev D, 71, pp., (2005)
[105] Three-dimensional numerical general relativistic hydrodynamics. II. long-term dynamics of single relativistic stars, Phys Rev D, 65, pp., (2002)
[106] Frauendiener J (2004) Conformal infinity. Living Rev Relativ 7:lrr-2004-1. doi:10.12942/lrr-2004-1. http://www.livingreviews.org/lrr-2004-1 · Zbl 1070.83006
[107] Note on the propagation of the constraints in standard 3+1 general relativity, Phys Rev D, 55, 5992-5996, (1997)
[108] Ill-posedness in the Einstein equations, J Math Phys, 41, 5535-5549, (2000) · Zbl 0977.83006
[109] Even parity junction conditions for perturbations on most general spherically symmetric space-times, J Math Phys, 20, 2540-2546, (1979)
[110] Gauge-invariant perturbations on most general spherically symmetric space-times, Phys Rev D, 19, 2268-2272, (1979)
[111] Gauge-invariant coupled gravitational, acoustical, and electromagnetic modes on most general spherical space-times, Phys Rev D, 22, 1300-1312, (1980)
[112] Asymptotic structure of space-time, 1-105, (1977), New York
[113] Linkages in general relativity, J Math Phys, 22, 803-812, (1981) · Zbl 0479.70004
[114] Spin-\(s\) spherical harmonics and \(ð \), J Math Phys, 8, 2155-2161, (1967) · Zbl 0155.57402
[115] Gravitational waveforms with controlled accuracy, Phys Rev D, 64, pp., (2001)
[116] First-order quasilinear canonical representation of the characteristic formulation of the Einstein equations, Phys Rev D, 68, pp., (2003)
[117] Null cone evolution of axisymmetric vacuum spacetimes, J Math Phys, 35, pp., (1994) · Zbl 0814.35136
[118] Cauchy-characteristic evolution of Einstein-Klein-Gordon systems, Phys Rev D, 54, 4719-4727, (1996)
[119] The eth formalism in numerical relativity, Class Quantum Gravity, 14, 977-990, (1997) · Zbl 0872.53054
[120] Gourgoulhon E (2012) 3+1 Formalism in general relativity: bases of numerical relativity, vol 846, lecture notes in physics. Springer, Berlin. doi:10.1007/978-3-642-24525-1. arXiv:gr-qc/0703035 · Zbl 1254.83001
[121] Gauge-invariant and coordinate-independent perturbations of stellar collapse I: the interior, Phys Rev D, 61, pp., (2000)
[122] Gauge-invariant and coordinate-independent perturbations of stellar collapse II: matching to the exterior, Phys Rev D, 64, pp., (2001)
[123] A ‘3+1’ method for finding principal null directions, Class Quantum Gravity, 12, 133-140, (1995) · Zbl 0816.53044
[124] Spectral characteristic evolution: a new algorithm for gravitational wave propagation, Classical and Quantum Gravity, 32, pp., (2015) · Zbl 1307.83016
[125] Gauge invariant spectral Cauchy characteristic extraction, Class Quantum Gravity, 32, pp., (2015) · Zbl 1329.83045
[126] Handmer CJ, Szilágyi B, Winicour J (2016) Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux. ArXiv e-prints ArXiv:1605.04332
[127] Harada T, Iguchi H, Shibata M (2003) Computing gravitational waves from slightly nonspherical stellar collapse to black hole: odd-parity perturbation. Phys Rev D 68:024002. doi:10.1103/PhysRevD.68.024002. arXiv:gr-qc/0305058
[128] Estimating energy-momentum and angular momentum near null infinity, Phys Rev D, 81, pp., (2010)
[129] Kretschmann scalar for a Kerr-Newman black hole, Astrophys J, 535, 350-353, (2000)
[130] Falloff of the Weyl scalars in binary black hole spacetimes, Phys Rev D, 84, pp., (2011)
[131] Gravitational radiation in the limit of high frequency. II. nonlinear terms and the effective stress tensor, Phys Rev, 166, 1272-1280, (1968)
[132] Null cone computation of gravitational radiation, J Math Phys, 24, pp., (1983)
[133] Stability of higher-dimensional Schwarzschild black holes, Prog Theor Phys, 110, 901-919, (2003) · Zbl 1053.83015
[134] Axial perturbations of general spherically symmetric spacetimes, Class Quantum Gravity, 19, 2125-2140, (2002) · Zbl 1002.83030
[135] Gauge-invariant gravitational wave extraction from coalescing binary neutron stars, Prog Theor Phys, 111, 589-594, (2004) · Zbl 1054.85004
[136] Kawamura M, Oohara Ki, Nakamura T (2003) General relativistic numerical simulation on coalescing binary neutron stars and gauge-invariant gravitational wave extraction. ArXiv e-prints arXiv:astro-ph/0306481
[137] Type d vacuum metrics, J Math Phys, 10, pp., (1969) · Zbl 0182.30202
[138] A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog Theor Phys, 110, 701-722, (2003) · Zbl 1050.83016
[139] Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog Theor Phys, 111, 29-73, (2004) · Zbl 1073.83029
[140] Brane world cosmology: gauge-invariant formalism for perturbation, Phys Rev D, 62, pp., (2000)
[141] The well-posedness of the null-timelike boundary problem for quasilinear waves, Class Quantum Gravity, 28, pp., (2011) · Zbl 1222.83026
[142] Landau LD, Lifshitz EM (1975) The classical theory of fields, course of theoretical physics, vol 2, 4th edn. Butterworth-Heinemann, Oxford
[143] Lehner L (1998) Gravitational radiation from black hole spacetimes. PhD thesis, University of Pittsburgh, Pittsburgh
[144] A dissipative algorithm for wave-like equations in the characteristic formulation, J Comput Phys, 149, pp., (1999) · Zbl 0923.65058
[145] Matching characteristic codes: exploiting two directions, Int J Mod Phys D, 9, 459-473, (2000) · Zbl 0974.83001
[146] Numerical relativity: a review, Class Quantum Gravity, 18, r25-r86, (2001) · Zbl 0987.83001
[147] Headon collisions of black holes: the particle limit, Phys Rev D, 55, 2124-2138, (1997)
[148] A practical formula for the radiated angular momentum, Phys Rev D, 76, pp., (2007)
[149] Intermediate-mass-ratio black hole binaries: intertwining numerical and perturbative techniques, Phys Rev D, 82, pp., (2010)
[150] Gravitational waveforms from a point particle orbiting a Schwarzschild black hole, Phys Rev D, 69, pp., (2004)
[151] A one-parameter family of time-symmetric initial data for the radial infall of a particle into a Schwarzschild black hole, Phys Rev D, 66, pp., (2002)
[152] Gravitational perturbations of the Schwarzschild spacetime: a practical covariant and gauge-invariant formalism, Phys Rev D, 71, pp., (2005)
[153] All nonspherical perturbations of the choptuik spacetime decay, Phys Rev D, 59, pp., (1999)
[154] Gravitational multipole radiation, J Soc Ind Appl Math, 10, pp., (1962) · Zbl 0114.21201
[155] A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries, Class Quantum Gravity, 27, pp., (2010)
[156] Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. W.H. Freeman, San Francisco
[157] Gravitational perturbations of spherically symmetric systems. I. the exterior problem, Ann Phys, 88, 323-342, (1974)
[158] Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes, Class Quantum Gravity, 22, r167-r192, (2006) · Zbl 1078.83024
[159] Accretion-driven gravitational radiation from nonrotating compact objects: infalling quadrupolar shells, Phys Rev D, 69, pp., (2004)
[160] Gravitational waves from oscillating accretion tori: comparison between different approaches, Phys Rev D, 72, pp., (2005)
[161] General relativistic collapse to black holes and gravitational waves from black holes, Prog Theor Phys Suppl, 90, 1-218, (1987)
[162] Perturbative extraction of gravitational waveforms generated with numerical relativity, Phys Rev D, 91, pp., (2015)
[163] Scalar functions for wave extraction in numerical relativity, Phys Rev D, 75, pp., (2007)
[164] Towards wave extraction in numerical relativity: the quasi-kinnersley frame, Phys Rev D, 72, pp., (2005)
[165] Towards a wave-extraction method for numerical relativity. IV: testing the quasi-kinnersley method in the Bondi-Sachs framework, Phys Rev D, 73, pp., (2006)
[166] An approach to gravitational radiation by a method of spin coefficients, J Math Phys, 3, pp., (1963) · Zbl 0108.40905
[167] Note on the Bondi-metzner-Sachs group, J Math Phys, 7, 863-870, (1966)
[168] Tensorial spin-s harmonics, Class Quantum Gravity, 23, 497-510, (2006) · Zbl 1087.83049
[169] Conformally flat smoothed particle hydrodynamics application to neutron star mergers, Phys Rev D, 65, pp., (2002)
[170] etal., Dynamics and gravitational wave signature of collapsar formation, Phys Rev Lett, 106, pp., (2011)
[171] How far away is far enough for extracting numerical waveforms, and how much do they depend on the extraction method?, Class Quantum Gravity, 24, s341-s368, (2007) · Zbl 1117.83036
[172] Asymptotic properties of fields and space-times, Phys Rev Lett, 10, 66-68, (1963)
[173] The light cone at infinity, 369-373, (1964), Oxford
[174] Penrose R (1965a) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57. doi:10.1103/PhysRevLett.14.57 · Zbl 0125.21206
[175] Penrose R (1965b) Zero rest-mass fields including gravitation: asymptotic behaviour. Proc R Soc Lond Ser A 284:159-203. doi:10.1098/rspa.1965.0058 · Zbl 0129.41202
[176] Penrose R, Rindler W (1984) Spinors and spacetime, vol. 1: two-spinor calculus and relativistic fields. Cambridge University Press, Cambridge · Zbl 0538.53024
[177] Penrose R, Rindler W (1986) Spinors and spacetime, vol. 2: spinor and twistor methods in space-time geometry. Cambridge University Press, Cambridge · Zbl 0591.53002
[178] etal., Reducing orbital eccentricity in binary black hole simulations, Class Quantum Gravity, 24, s59-s82, (2007) · Zbl 1117.83075
[179] Absorption of mass and angular momentum by a black hole: time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation, Phys Rev D, 70, pp., (2004)
[180] Poisson E, Pound A, Vega I (2011) The motion of point particles in curved spacetime. Living Rev Relativ 14:lrr-2011-7. doi:10.12942/lrr-2011-7. http://www.livingreviews.org/lrr-2011-7, arXiv:1102.0529 · Zbl 1316.83024
[181] etal., Recoil velocities from equal-mass binary black-hole mergers: a systematic investigation of spin-orbit aligned configurations, Phys Rev D, 76, pp., (2007)
[182] The asymptotic falloff of local waveform measurements in numerical relativity, Phys Rev D, 80, pp., (2009)
[183] High accuracy binary black hole simulations with an extended wave zone, Phys Rev D, 83, pp., (2011)
[184] Long wave trains of gravitational waves from a vibrating black hole, Astrophys J, 170, pp., (1971)
[185] Numerical relativity using a generalized harmonic decomposition, Class Quantum Gravity, 22, 425-451, (2005) · Zbl 1067.83001
[186] Nonspherical perturbations of relativistic gravitational collapse. I. scalar and gravitational perturbations, Phys Rev D, 5, 2419-2438, (1972)
[187] Nonspherical perturbations of relativistic gravitational collapse. II. integer-spin, zero-rest-mass fields, Phys Rev D, 5, 2439-2454, (1972)
[188] Colliding black holes: the close limit, Phys Rev Lett, 72, 3297-3300, (1994) · Zbl 0973.83532
[189] Stability of a Schwarzschild singularity, Phys Rev, 108, 1063-1069, (1957) · Zbl 0079.41902
[190] Reisswig C (2010) Binary black hole mergers and novel approaches to gravitational wave extraction in numerical relativity. PhD thesis, Universität Hannover, Hannover
[191] Notes on the integration of numerical relativity waveforms, Class Quantum Gravity, 28, pp., (2011) · Zbl 1226.83041
[192] Characteristic evolutions in numerical relativity using six angular patches, Class Quantum Gravity, 24, pp., (2007) · Zbl 1117.83013
[193] Unambiguous determination of gravitational waveforms from binary black hole mergers, Phys Rev Lett, 103, pp., (2009)
[194] Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity, Class Quantum Gravity, 27, pp., (2010) · Zbl 1187.83026
[195] Gravitational wave extraction in simulations of rotating stellar core collapse, Phys Rev D, 83, pp., (2011)
[196] Reisswig C, Bishop NT, Pollney D (2013a) General relativistic null-cone evolutions with a high-order scheme. Gen Rel Gravit 45:1069-1094. doi:10.1007/s10714-013-1513-1. arXiv:1208.3891 · Zbl 1269.83014
[197] Reisswig C, Haas R, Ott CD, Abdikamalov E, Mösta P, Pollney D, Schnetter E (2013b) Three-dimensional general-relativistic hydrodynamic simulations of binary neutron star coalescence and stellar collapse with multipatch grids. Phys Rev D 87:064023. doi:10.1103/PhysRevD.87.064023. arXiv:1212.1191
[198] Reula OA (1998) Hyperbolic methods for Einstein’s equations. Living Rev Relativ 1:lrr-1998-3. doi:10.12942/lrr-1998-3. http://www.livingreviews.org/lrr-1998-3
[199] Rezzolla L, Zanotti O (2013) Relativistic hydrodynamics. Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780198528906.001.0001 · Zbl 1297.76002
[200] Rezzolla L, Abrahams AM, Matzner RA, Rupright ME, Shapiro SL (1999a) Cauchy-perturbative matching and outer boundary conditions: computational studies. Phys Rev D 59:064001. doi:10.1103/PhysRevD.59.064001. arXiv:gr-qc/9807047
[201] Rezzolla L, Shibata M, Asada H, Baumgarte TW, Shapiro SL (1999b) Constructing a mass-current radiation-reaction force for numerical simulations. Astrophys J 525:935-949. doi:10.1086/307942. arXiv:gr-qc/9905027
[202] Some spherical gravitational waves in general relativity, Proc R Soc Lond Ser A, 265, 463-473, (1962) · Zbl 0099.42902
[203] Multiple expansions for energy and momenta carried by gravitational waves, Gen Relativ Gravit, 40, 1705-1729, (2007) · Zbl 1145.83325
[204] Multipole expansions for energy and momenta carried by gravitational waves, Gen Relativ Gravit, 40, 2467-2467, (2008) · Zbl 1145.83325
[205] New approach to the evolution of neutron star oscillations, Phys Rev D, 63, pp., (2001)
[206] Excitation of neutron star oscillations by an orbiting particle, Phys Rev D, 63, pp., (2001) · Zbl 1008.83016
[207] Cauchy-perturbative matching and outer boundary conditions I: methods and tests, Phys Rev D, 58, pp., (1998)
[208] Gravitational waves in general relativity VIII. waves in asymptotically flat space-time, Proc R Soc Lond Ser A, 270, 103-126, (1962) · Zbl 0101.43605
[209] Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries, Phys Rev D, 82, pp., (2010)
[210] Gauge invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates, Phys Rev D, 64, pp., (2001)
[211] High-accuracy waveforms for binary black hole inspiral, merger, and ringdown, Phys Rev D, 79, pp., (2009)
[212] Gravitational radiation from even-parity perturbations of stellar collapse: mathematical formalism and numerical methods, Phys Rev D, 42, 1884-1907, (1990)
[213] Normal mode excitation from stellar collapse to a black hole: odd-parity perturbations, Phys Rev D, 44, pp., (1991)
[214] Intermediate-age core helium burning stars and the distance to the magellanic clouds, Astrophys J, 303, pp., (1987)
[215] Gravitational radiation from type-ii supernovae: the effect of the high-density equation of state, Phys Rev D, 38, 2349-2356, (1988)
[216] Evolution of three-dimensional gravitational waves: harmonic slicing case, Phys Rev D, 52, 5428-5444, (1995) · Zbl 1250.83027
[217] Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity, Phys Rev D, 69, pp., (2004)
[218] Three-dimensional simulations of stellar core collapse in full general relativity: nonaxisymmetric dynamical instabilities, Phys Rev D, 71, pp., (2005)
[219] Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations, Phys Rev D, 68, pp., (2003)
[220] Merger of binary neutron stars of unequal mass in full general relativity, Phys Rev D, 68, pp., (2003)
[221] Axisymmetric core collapse simulations using characteristic numerical relativity, Phys Rev D, 67, pp., (2003)
[222] Spacetimes generated by computers: black holes with gravitational radiation, Ann NY Acad Sci, 302, 569-604, (1977)
[223] Gravitational recoil from binary black hole mergers: the close-limit approximation, Phys Rev D, 74, pp., (2006)
[224] Stewart JM (1990) Advanced general relativity, Cambridge monographs on mathematical physics. Cambridge University Press, Cambridge
[225] Numerical relativity. I. the characteristic initial value problem, Proc R Soc Lond Ser A, 384, 427-454, (1982) · Zbl 0541.65089
[226] Szilágyi B (2000) Cauchy-characteristic matching in general relativity. PhD thesis, University of Pittsburgh, Pittsburgh. arXiv:gr-qc/0006091
[227] Well-posed initial-boundary evolution in general relativity, Phys Rev D, 68, pp., (2003) · Zbl 1244.83010
[228] Cauchy boundaries in linearized gravitational theory, Phys Rev D, 62, pp., (2000)
[229] Boundary conditions in linearized harmonic gravity, Phys Rev D, 65, pp., (2002)
[230] Simulations of binary black hole mergers using spectral methods, Phys Rev D, 80, pp., (2009)
[231] Gravitational fields in finite and conformal Bondi frames, Phys Rev, 150, 1039-1053, (1966)
[232] Comparing gravitational waveform extrapolation to Cauchy-characteristic extraction in binary black hole simulations, Phys Rev D, 88, pp., (2013)
[233] Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations, Phys Rev Lett, 29, 1114-1118, (1972)
[234] Perturbations of a rotating black hole. I. fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys J, 185, 635-647, (1973)
[235] Gravitational-wave research: current status and future prospects, Rev Mod Phys, 52, pp., (1980)
[236] Multipole expansions of gravitational radiation, Rev Mod Phys, 52, pp., (1980)
[237] Gravitational waves from a test particle scattered by a neutron star: axial mode case, Phys Rev D, 60, pp., (1999)
[238] Scattering of gravitational radiation by a Schwarzschild black-hole, Nature, 227, pp., (1970)
[239] Stability of the Schwarzschild metric, Phys Rev D, 1, pp., (1970)
[240] Wald RM (1984) General relativity. University of Chicago Press, Chicago · Zbl 0549.53001
[241] Some total invariants of asymptotically flat space-times, J Math Phys, 9, 861-867, (1968) · Zbl 0169.57702
[242] Angular momentum in general relativity, No. 2, 71-96, (1980), New York
[243] Winicour J (2005) Characteristic evolution and matching. Living Rev Relativ 8:lrr-2005-10. doi:10.12942/lrr-2005-10. http://www.livingreviews.org/lrr-2005-10, arXiv:gr-qc/0508097
[244] Kinematics and dynamics of general relativity, 83-126, (1979), Cambridge
[245] Quasi-periodic accretion and gravitational waves from oscillating “toroidal neutron stars” around a Schwarzschild black hole, Mon Not R Astron Soc, 341, pp., (2003)
[246] Effective potential for even-parity Regge-Wheeler gravitational perturbation equations, Phys Rev Lett, 24, 737-738, (1970)
[247] Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys Rev D, 2, pp., (1970) · Zbl 1227.83025
[248] Tensor harmonics in canonical form for gravitational radiation and other applications, J Math Phys, 11, 2203-2208, (1970)
[249] Mode coupling in the nonlinear response of black holes, Phys Rev D, 68, pp., (2003)
[250] Dynamics and gravitational wave signature of axisymmetric rotational core collapse, Astron Astrophys, 320, pp., (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.