×

Assessment and validation in quantile composite-based path modeling. (English) Zbl 1366.62155

Abdi, Hervé (ed.) et al., The multiple facets of partial least squares methods. PLS, Paris, France, May 26–28, 2014. Cham: Springer (ISBN 978-3-319-40641-1/hbk; 978-3-319-40643-5/ebook). Springer Proceedings in Mathematics & Statistics 173, 169-185 (2016).
Summary: The paper aims to introduce assessment and validation measures in Quantile Composite-based Path modeling. A quantile approach in the Partial Least Squares path modeling framework overcomes the classical exploration of average effects and highlights how and if the relationships among observed and unobserved variables change according to the explored quantile of interest. A final evaluation of the quality of the obtained results both from a descriptive (assessment) and inferential (validation) point of view is needed. The functioning of the proposed method is shown through a real data application in the area of the American Customer Satisfaction Index.
For the entire collection see [Zbl 1356.62003].

MSC:

62J99 Linear inference, regression
62J05 Linear regression; mixed models
62P20 Applications of statistics to economics

Software:

Stata; bootstrap; iqreg
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Amato, S., Esposito Vinzi, V., Tenenhaus, M.: A global goodness-of-fit index for PLS structural equation modeling. Oral Communication to PLS Club, HEC School of Management, France (2004)
[2] American Customer Satisfaction Index: LLC. Food processing sector (2000)
[3] Anderson, E.W., Fornell, C.: Foundations of the American customer satisfaction index. J. Total Qual. Manag. 11 (7), 869–882 (2000)
[4] Chin, W.W.: The partial least squares approach to structural equation modeling. In: Marcoulides, G.A. (ed.) Modern Methods for Business Research, pp. 295–358. Lawrence Erlbaum Associates, Mahwah (1998)
[5] Davino, C.: Combining PLS path modeling and quantile regression for the evaluation of customer satisfaction. Ital. J. Appl. Stat. 26, 93–116 (2014) (published in 2016)
[6] Davino, C., Esposito Vinzi, V.: Quantile PLS path modeling. In: Book of Abstract of the 8th International Conference on Partial Least Squares and Related Methods, Paris (2014) · Zbl 1366.62155
[7] Davino, C., Esposito Vinzi, V.: Quantile Composite-based Path Modelling, Advances in Data Analysis and Classification. Theory, Methods, and Applications in Data Science (2016) DOI 10.1007/s11634-015-0231-9 · Zbl 1366.62155
[8] Davino, C., Furno, M., Vistocco, D.: Quantile Regression: Theory and Applications. Wiley, Chichester (2013) · Zbl 1286.62004
[9] Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman Hall, New York (1993) · Zbl 0835.62038
[10] Esposito Vinzi, V., Russolillo, G.: Partial least squares algorithms and methods. WIREs Comput. Stat. 5, 1–19 (2012)
[11] Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M.: REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modelling. Appl. Stoch. Models Bus. Ind. 24 (5), 439–458 (2008) · Zbl 1199.90018
[12] Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H.: Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer, Berlin/New York (2010) · Zbl 1186.62001
[13] Fornell, C., Larcker, D.F.: Structural equation models with unobservable variables and measurement error: algebra and statistics. J. Mark. Res. 18 (3), 328–388 (1981)
[14] Götz, O., Liehr-Gobbers, K., Krafft, M.: Evaluation of structural equation models using the partial least squares (PLS) approach. In: Esposito Vinzi, V., Chin, W.W., Henseler, J., Wang, H. (eds.) Handbook of Partial Least Squares: Concepts, Methods, and Applications. Springer, Berlin (2009)
[15] Gould, W.: sg70: interquantile and simultaneous-quantile regression. Stata Tech. Bull. 38, 14–22 (1997)
[16] Henseler, J., Sarstedt, M.: Goodness-of-fit indices for partial least squares path modeling. Comput. Stat. 28, 565–580 (2013) · Zbl 1305.65042
[17] Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 20, 277–319 (2009)
[18] Kocherginsky, M., He, H., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14 (1), 41–55 (2005)
[19] Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge/New York (2005) · Zbl 1111.62037
[20] Koenker, R., Basset, G.W.: Regression quantiles. Econometrica 46, 33–50 (1978) · Zbl 0373.62038
[21] Koenker, R., Basset, G.W.: Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50, 43–61 (1982a) · Zbl 0482.62023
[22] Koenker, R., Basset, G.W.: Tests for linear hypotheses and L1 estimation. Econometrica 46, 33–50 (1982b) · Zbl 0373.62038
[23] Koenker, R., Machado, J.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999) · Zbl 0998.62041
[24] Li, G., Li, Y., Tsai, C.L.: Quantile correlations and quantile autoregressive modeling. J. Am. Stat. Assoc. 110 (509), 233–245 (2015) · Zbl 1373.62416
[25] Lohmöller, J.B.: Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag, Heidelberg (1989) · Zbl 0788.62050
[26] Parzen, M.I., Wei, L., Ying, Z: A resampling method based on pivotal estimating functions. Biometrika 18, 341–350 (1994) · Zbl 0807.62038
[27] Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36, 111–147 (1974) · Zbl 0308.62063
[28] Tenenhaus, M.: La Régression PLS: Théorie et Pratique. Technip, Paris (1998) · Zbl 0923.62058
[29] Tenenhaus, M., Amato, S., Esposito Vinzi, V.: A global goodness-of-fit index for PLS structural equation modelling. In: Proceedings of the XLII SIS scientific meeting, pp. 739–742 (2004)
[30] Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., Lauro, C.: PLS path modeling. Comput. Stat. Data Anal. 48 (1), 159–205 (2005) · Zbl 1429.62227
[31] Wold, H.: Partial least squares. In: Kotz, S., Johnson, N.L. (eds.) Encyclopedia of Statistical Sciences. John Wiley, New York (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.