×

zbMATH — the first resource for mathematics

Algebraic varieties and \(q\)-complete complex spaces. (Algebraische Varietäten und \(q\)-vollständige komplexe Räume.) (German) Zbl 0675.32014
This is essentially the author’s dissertation [same title (1987; Zbl 0655.32019)] in which there was a typo: Instead of \(\dim_{{\mathbb{C}}}Y=q>1\) one should read \(co\dim_{{\mathbb{C}}}Y=q>1\).
Reviewer: Vo Van Tan

MSC:
32F10 \(q\)-convexity, \(q\)-concavity
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andreotti, A., Frankel, T.: The Lefschetz theorem on hyperplane sections. Ann. Math.69, 713-717 (1959) · Zbl 0115.38405 · doi:10.2307/1970034
[2] Andreotti, A., Grauert, H.: Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France90, 193-259 (1962) · Zbl 0106.05501
[3] Ballico, E.: Complements of analytic subvarieties andq-complete spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)71, 60-65 (1981) · Zbl 0513.32022
[4] Barth, W.: Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projektiven Raum. Math. Ann.187, 150-162 (1970) · Zbl 0189.36704 · doi:10.1007/BF01350179
[5] Barth, W.: Transplanting cohomology classes in complex projective space. Am. J. Math.92, 951-967 (1970) · Zbl 0206.50001 · doi:10.2307/2373404
[6] Barth, W., Larsen, M.: On the homotopy groups of complex projective manifolds. Math. Scand,30, 88-94 (1972) · Zbl 0238.32008
[7] Bott, R.: On a theorem of Lefschetz. Mich. Math. J.6, 211-216 (1959) · Zbl 0113.36502 · doi:10.1307/mmj/1028998225
[8] Diederich, K., Fornaess, J.E.: Smoothingq-convex functions and vanishing theorems. Invent. Math.82, 291-305 (1985) · Zbl 0586.32022 · doi:10.1007/BF01388805
[9] Diederich, K., Fornaess, J.E.: Smoothingq-Convex Functions in the Singular Case. Math. Ann. Ann.273, 665-671 (1986) · Zbl 0586.32023 · doi:10.1007/BF01472137
[10] Fritzsche, K.:q-konvexe Restmengen in kompakten komplexen Mannigfaltigkeiten. Math. Ann.221, 251-273 (1976) · Zbl 0327.32007 · doi:10.1007/BF01596392
[11] Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry. Algebraic Geometry. Lecture Notes in Mathematics862, 26-92. Berlin Heidelberg New York: Springer 1981 · Zbl 0484.14005
[12] Goresky, M., MacPherson, R.: Stratified morse theory. Proc. Symp. Pure Math. Arcata 1981, vol. 40, part 1, 517-533 (1983) · Zbl 0526.57022
[13] Grauert, H.: Kantenkohomologie. Compos. Math.44, 79-101 (1981) · Zbl 0512.32011
[14] Grauert, H.: On Levi’s problem and the imbedding of real analytic manifolds. Ann. Math.68, 460-472 (1958) · Zbl 0108.07804 · doi:10.2307/1970257
[15] Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics41. Berlin Heidelberg New York: Springer 1967 · Zbl 0185.49202
[16] Hamm, H.A.: Zum Homotopietyp Steinscher Räume. J. Reine Angew. Math.338, 121-135 (1983) · Zbl 0491.32010 · doi:10.1515/crll.1983.338.121
[17] Hartshorne, R.: Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156. Berlin Heidelberg New York: Springer 1981 · Zbl 0532.14001
[18] Hartshorne, R.: Cohomological dimension of algebraic varieties. Ann. Math.88, 403-450 (1968) · Zbl 0169.23302 · doi:10.2307/1970720
[19] Larsen, M.: On the topology of complex projective manifolds. Invent. Math.19, 251-260 (1973) · Zbl 0255.32004 · doi:10.1007/BF01390209
[20] Milnor, J.: Morse theory. Ann. Math. Stud.51. Princeton NJ: Princeton University Press 1963 · Zbl 0108.10401
[21] Ogus, A.: Local cohomological dimension of algebraic varieties. Ann. Math.98, 327-365 (1973) · Zbl 0308.14003 · doi:10.2307/1970785
[22] Okonek, C.: Barth-Lefschetz theorems for singular spaces. J. Reine Angew. Math.374, 24-38 (1987) · Zbl 0595.32036 · doi:10.1515/crll.1987.374.24
[23] Peternell, M.: Continuousq-convex exhausion functions. Invent. Math.85, 249-262 (1986) · Zbl 0599.32016 · doi:10.1007/BF01389090
[24] Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann.175, 257-286 (1986) · Zbl 0153.15401 · doi:10.1007/BF02063212
[25] Schneider, M.: Über eine Vermutung von Hartshorne. Math. Ann.201, 221-229 (1973) · Zbl 0255.32009 · doi:10.1007/BF01427944
[26] Sommese, A.J.: Complex subspaces of homogenous complex manifolds I. Transplanting theorems. Duke Math. J.46, 527-548 (1979) · Zbl 0426.32002 · doi:10.1215/S0012-7094-79-04627-1
[27] Sommese, A.J.: Complex subspaces of homogenous complex manifolds II. Homotopy results. Nagoya Math. J.86, 101-129 (1982) · Zbl 0497.32026
[28] Sommese, A.J., Van de Ven, A.: Homotopy groups of pullbacks of varieties. Nagoya Math. J.102, 79-90 (1986) · Zbl 0564.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.