×

Real-time computation of feedback controls for constrained optimal control problems. I: Neighbouring extremals. (English) Zbl 0675.49023

Summary: A numerical method is developed for the real-time computation of neighbouring optimal feedback controls for constrained optimal control problems. The first part of this paper presents the theory of neighbouring extremals. Besides a survey of the theory of neighbouring extremals, special emphasis is laid on the inclusion of complex constraints, e.g. state and control variable inequality constraints and discontinuities of the system equations at interior points. The numerical treatment of these constraints is particularly emphasized. The linearization of all necessary conditions of optimal control theory leads to a linear, multipoint, boundary value problem with linear jump conditions that is especially well suited for numerical treatment.
[For part II see the author, ibid. 10, No.2, 147-171 (1989; Zbl 0675.49024).]

MSC:

49M05 Numerical methods based on necessary conditions
65K10 Numerical optimization and variational techniques
93B40 Computational methods in systems theory (MSC2010)
49K15 Optimality conditions for problems involving ordinary differential equations
93C15 Control/observation systems governed by ordinary differential equations
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)

Citations:

Zbl 0675.49024
Full Text: DOI

References:

[1] ’Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung’, Report, Carl-Cranz Gesellschaft, 1971.
[2] and , Introduction to Numerical Analysis, Springer, New York, 1980. · doi:10.1007/978-1-4757-5592-3
[3] ’Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell’, Habilitationsschrift, Munich University of Technology, 1982.
[4] ’Aircraft maneuver optimization of reduced-order approximation’, in (ed.), Control and Dynamic Systems, Vol. 10, Academic Press, New York, 1973. · Zbl 0295.49027
[5] Kelley, Optim. control appl. methods 3 pp 293– (1982)
[6] Weston, J. Guidance, Control, and Dynamics 8 pp 320– (1985)
[7] ’Gamma guidance for the inertial upper stage’, AIAA 78–1292, 1978, pp. 357–362.
[8] and , ’Shuttle entry guidance’, NASA Report 79-FM-7 JSC-14694, 1979.
[9] and , ’Multivariable terminal control for minimum mean square deviation from a nominal path’, Proc. Inst. Aerospace Sci., Symp. on Vehicle Systems Optimization, Garden City, NY, 1961.
[10] Bryson, ARS J. 32 pp 894– (1962) · doi:10.2514/8.6166
[11] Jazwinski, AIAA J. 2 pp 1371– (1964)
[12] and , ’A successive sweep method for solving optimal control Problems’, Proc. 6th Joint Automatic Control Conf., Troy, NY, 1965, pp. 551–555.
[13] Mitter, Automatica 3 pp 135– (1966)
[14] Dyer, IEEE Trans. Automatic Control AC-14 pp 223– (1969)
[15] Speyer, AIAA J. 6 pp 769– (1968)
[16] ’Perturbation guidance for minimum time flight paths of spacecraft’, AIAA/AAS Astrodynamics Conf., Palo Alto, CA, 11–12 September 1972, pp. 1–11. Paper No. 72–915, 1972.
[17] ’Numerische Berechnung optimaler Flugbahnkorrekturen in Echtzeit-Rechnung’, Ph.D. Thesis, Munich University of Technology,1978; see also TUM Report 7820, 1978. · Zbl 0415.49018
[18] Pesch, Appl. Math. Optim. 5 pp 231– (1979)
[19] Pesch, J. Guidance and Control 3 pp 386– (1980)
[20] Bock, ZAMM 61 pp t330– (1981)
[21] Hymas, AIAA J. 11 pp 1101– (1973)
[22] ’Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen’, Bonner Mathematische Schriften No. 164, 1985.
[23] ’Echtzeitberechnung fastoptimaler Rückkopplungssteuerungen bei Steuerungsproblemen mit Beschrankungen’, Habilitationsschrift, Munich University of Technology, 1986; see also Schwerpunktprogramm der Deutschen Forschungsgemeinschaft ’Anwendungsbezogene Optimierung und Steuerung’, Report No. 8, 1987.
[24] and , Applied Optimal Control, Ginn and Company, Waltham, MA, 1969.
[25] McDanell, SIAM J. Control 9 pp 161– (1971)
[26] ’Numerical computation of singular control functions for a two-link robot arm’, Proc. Conf. on Optimal Control and Variational Calculus, Oberwolfach, F.R.G., 15–21 January 1986;
[27] , and (eds), Lecture Notes in Control and Information Sciences, Vol. 95, Springer, Berlin, 1987.
[28] ’On optimum linear perturbation guidance of space vehicles’, 2nd IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Collections of Papers, Oberpfaffenhofen, F.R.G., 1980, pp. 242–247.
[29] Private communication, 1979.
[30] ’The accessory minimum problem and closed loop controls’, Proc. 14th IFIP Conf. on System Modelling and Optimization, Leipzig, G.D.R., 3–7 July 1989, to appear.
[31] Breakwell, SIAM J. Control, Ser. A 1 pp 193– (1963)
[32] Kelley, IRE Trans. Automatic Control AC-7 pp 75– (1962)
[33] Pesch, Optim. control appl. methods 10 (1989)
[34] ’Second-order optimality conditions for the Bolza problem with path constraints’, IEEE Conf. on Decision and Control, 1973, Paper No. FA2–6. pp. 606–613.
[35] Jacobson, J. Math. Anal. Appl. 35 pp 255– (1971)
[36] Breakwell, Int. J. Eng. Sci 2 pp 565– (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.