×

zbMATH — the first resource for mathematics

A finite element approximation of three dimensional motion of a Bingham fluid. (English) Zbl 0675.76009
Summary: We approximate solutions of an initial-boundary value problem associated with the motion of a Bingham fluid in a three dimensional domain. The method of approximation consists of the backward Euler scheme in the time variable and conforming piecewise linear finite elements in the space variables augmented by the penalty method. The convergence of this scheme is proved under a mild assumption on the data. Error estimates are also obtained when the data satisfy restrictive assumptions.
MSC:
76A10 Viscoelastic fluids
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] D. BEGIS, Analyse numérique de l’écoulement d’un fluide de Bingham, Thèse Université de Paris, 1972.
[2] L. CATTABRIGA, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend Mat Sem. Univ. Padova, 31, 1961, p. 300-340. Zbl0116.18002 MR138894 · Zbl 0116.18002 · numdam:RSMUP_1961__31__308_0 · eudml:107065
[3] P. G. CIARLET, The Finite Element Method for Elhptic Problems, North-Holland, Amsterdam-New York-Oxford, 1978. Zbl0383.65058 MR520174 · Zbl 0383.65058
[4] G. DUVAUT, and J. L. LIONS, Écoulement d’un fluide rigide viscoplastiqueincompressible, C. R. Acad Sc. Paris, T 270, 1970, pp. 58-61. Zbl0194.57604 MR261154 · Zbl 0194.57604
[5] G. DUVAUT and J. L. LIONS, Inequalities in Mechanics and Physics, Springer-Verlag, Berlm-Heidelberg-New York, 1976. Zbl0331.35002 MR521262 · Zbl 0331.35002
[6] M. FORTIN, Calcul numérique des écoulements des fluides de Bingham et desfluides newtomens incompressibles par la méthode des éléments finis, Thèse, Université de Paris, 1972.
[7] D. GILBARG, and N. S. TRUDINGER, Elliptic Partial Differential Equations ofsecond order, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl0361.35003 MR473443 · Zbl 0361.35003
[8] V. GiRAULT and P. A. RAVIART, Finite element Approximation of the Navier-Stokes Equations, Lecture Notes in Math. Vol. 749, Springer-Verlag, 1979. Zbl0413.65081 MR548867 · Zbl 0413.65081 · doi:10.1007/BFb0063447
[9] R. GLOWINSKI, Sur l’écoulement d’un fluide de Bmgham dans une conduite cylindrique, J. Mech. 13 (4), 1974, p 601-621. Zbl0324.76004 MR371245 · Zbl 0324.76004
[10] R. GLOWINSKI, Numencal Methods for Nonhnear vanational Problems, Springer-Verlag, New York-Berlin-Heidelberg, 1984.
[11] R. GLOWINSKI, J. L. LIONS, and R. TREMOLIERES, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam-New York-Oxford, 1981. Zbl0463.65046 MR635927 · Zbl 0463.65046
[12] J. G. HEYWOOD, and R. RANNACHER, Finite Element Approximation of the Nonstationary Navier-Stokes problem, Part II, SIAM J. Num. Anal., 23, No 4, 1986, p 750-777. Zbl0611.76036 MR849281 · Zbl 0611.76036 · doi:10.1137/0723049
[13] J. KIM, On the initial-boundary value problem for a Bingham fluid in a threedimensional domain, Trans. Amer. Math. Soc., Vol. 304, No 2, 1987, p. 751-770. Zbl0635.35054 MR911094 · Zbl 0635.35054 · doi:10.2307/2000740
[14] J. KIM, Semi-discretization Method for three dimensional motion of a Bingham fluid, preprint. Zbl0706.35113 · Zbl 0706.35113 · doi:10.1137/0521004
[15] J. L. LIONS, Quelques Methodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. Zbl0189.40603 MR259693 · Zbl 0189.40603
[16] R. TEMAM, Une Methode d’Approximation de la Solution des Equations deNavier-Stokes, Bull. Soc. Math. France, Vol. 96, 1968, p. 115-152. Zbl0181.18903 MR237972 · Zbl 0181.18903 · numdam:BSMF_1968__96__115_0 · eudml:87104
[17] R. TEMAN, Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1984. Zbl0568.35002 MR769654 · Zbl 0568.35002
[18] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1983. Zbl0833.35110 MR764933 · Zbl 0833.35110
[19] H. TRIEBEL, Interpolation Theory,Function spaces, Differential Operators, North-Holland, Amsterdam-New-Oxford, 1978. Zbl0387.46032 MR503903 · Zbl 0387.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.