# zbMATH — the first resource for mathematics

Scalar transport and alpha-effect for a family of cat’s-eye flows. (English) Zbl 0675.76091
Summary: In this paper we study advection-diffusion of scalar and vector fields for the steady velocity field $$(u,v,w)=(\partial \psi /\partial y,- \partial \psi /\partial x,K\psi)$$, $$\psi =\sin x\sin y+\delta \cos x \cos y$$. If $$\delta >0$$ the streamlines $$\psi=$$constant form a periodic array of oblique cat’s-eyes separated by continuous channels carrying finite fluid flux. In the problems treated, advection dominates diffusion, and fields are transported both in thin boundary layers and within the channels. Effective transport of a passive scalar and the alpha-effect generated by interaction of the flow with a uniform magnetic field are examined. For the latter problem, we determine the alpha-matrix as a function of $$\delta$$.
Our results consist of (i) numerical solution of steady problems in the limit of large Reynolds number R with $$\beta =\delta R^{1/2}$$ held fixed and O(1), and (ii) analytic asymptotic solutions for large R, obtained using the Wiener-Hopf technique, which are valid for large $$\beta$$. The asymptotic method gives reliable values of the effective diffusion and of alpha-matrices down to $$\beta$$ $$\approx 1.5.$$
When $$\beta >0$$ the transport and alpha-effect are greatly enhanced by flux down the channels. Consequently, the alpha-effect found here may have application to the construction of efficient fast dynamos, but this requires spatial dependence of the mean field and the inclusion of three- dimensional effects, as in the established fast-dynamo analysis with $$\delta =0$$.

##### MSC:
 76R50 Diffusion
Full Text:
##### References:
 [1] Brown, Geophys. Astrophys. Fluid Dyn. 10 pp 1– (1978) [2] Benney, Stud. Appl. Maths 48 pp 181– (1969) · Zbl 0197.25403 · doi:10.1002/sapm1969483181 [3] DOI: 10.1017/S0022112056000123 · Zbl 0070.42004 · doi:10.1017/S0022112056000123 [4] Anufriyev, Geomag. Aeron. 22 pp 245– (1982) [5] Soward, Geophys. Astrophys. Fluid Dyn. 180 pp 267– (1989) [6] Stewartson, Mathematika 15 pp 22– (1968) [7] DOI: 10.1017/S0022112087001800 · Zbl 0637.76122 · doi:10.1017/S0022112087001800 [8] DOI: 10.1016/0273-1177(86)90403-5 · doi:10.1016/0273-1177(86)90403-5 [9] Roberts, Phil. Trans. R. Soc. Lond. 271 pp 411– (1972) [10] DOI: 10.1017/S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822 [11] DOI: 10.1063/1.866304 · Zbl 0621.76049 · doi:10.1063/1.866304 [12] DOI: 10.1017/S002211208500163X · Zbl 0604.76092 · doi:10.1017/S002211208500163X [13] DOI: 10.1137/0128017 · Zbl 0315.76013 · doi:10.1137/0128017 [14] Galloway, Geophys. Astrophys. Fluid Dyn. 36 pp 53– (1986) [15] DOI: 10.1017/S0022112086002859 · Zbl 0622.76027 · doi:10.1017/S0022112086002859 [16] DOI: 10.1016/0031-9201(79)90039-6 · doi:10.1016/0031-9201(79)90039-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.