zbMATH — the first resource for mathematics

Model identification and vision-based \(H_\infty\) position control of 6-DoF cable-driven parallel robots. (English) Zbl 1366.93122
Summary: This paper presents methodologies for the identification and control of 6-degrees of freedom (6-DoF) Cable-Driven Parallel Robots (CDPRs). First, a two-step identification methodology is proposed to accurately estimate the kinematic parameters independently and prior to the dynamic parameters of a physics-based model of CDPRs. Second, an original control scheme is developed, including a vision-based position controller tuned with the \( H_\infty\) methodology and a cable tension distribution algorithm. The position is controlled in the operational space, making use of the end-effector pose measured by a motion-tracking system. A four-block \(H_\infty\) design scheme with adjusted weighting filters ensures good trajectory tracking and disturbance rejection properties for the CDPR system, which is a nonlinear-coupled MIMO system with constrained states. The tension management algorithm generates control signals that maintain the cables under feasible tensions. The paper makes an extensive review of the available methods and presents an extension of one of them. The presented methodologies are evaluated by simulations and experimentally on a redundant 6-DoF INCA 6D CDPR with eight cables, equipped with a motion-tracking system.

93B30 System identification
93C85 Automated systems (robots, etc.) in control theory
93B36 \(H^\infty\)-control
Full Text: DOI
[1] DOI: 10.1109/TAC.2005.860290 · Zbl 1366.93148 · doi:10.1109/TAC.2005.860290
[2] Burke J., HIFOO - a Matlab package for fixed-order controller design and H optimisation (2006)
[3] DOI: 10.1109/ICRA.2011.5979762 · doi:10.1109/ICRA.2011.5979762
[4] DOI: 10.1115/1.3257146 · doi:10.1115/1.3257146
[5] DOI: 10.1109/IROS.2012.6385504 · doi:10.1109/IROS.2012.6385504
[6] DOI: 10.1109/IROS.2011.6094591 · doi:10.1109/IROS.2011.6094591
[7] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[8] Duc G., Commande H et \(\mu\)-analyse (1999)
[9] DOI: 10.1002/rnc.4590040403 · Zbl 0808.93024 · doi:10.1002/rnc.4590040403
[10] DOI: 10.1109/TCST.2012.2185697 · doi:10.1109/TCST.2012.2185697
[11] Gautier M., Journal Européen des Systèmes Automatisés 36 (3) pp 465– (2002)
[12] DOI: 10.1109/IROS.2008.4650740 · doi:10.1109/IROS.2008.4650740
[13] DOI: 10.1109/TRO.2015.2495005 · doi:10.1109/TRO.2015.2495005
[14] Gosselin C., Cable-Driven Parallel Robots (2012)
[15] DOI: 10.1007/s11012-010-9369-x · Zbl 1370.70008 · doi:10.1007/s11012-010-9369-x
[16] DOI: 10.1109/TCST.2014.2299544 · doi:10.1109/TCST.2014.2299544
[17] DOI: 10.1109/TRO.2011.2142450 · doi:10.1109/TRO.2011.2142450
[18] DOI: 10.1017/S0263574799002477 · doi:10.1017/S0263574799002477
[19] Khalil W., Modélisation, identification et commande des Robots (1999)
[20] Lafourcade, P. (2004). Etude des manipulateurs parallèles à câbles, conception d’une suspension active pour soufflerie (Doctoral dissertation) [A study on cable-driven parallel manipulators, design of an active suspension for a wind tunel]. ENSAE School, Toulouse.
[21] Lamaury J., Advances in robot kinematics (ARK) pp 237– (2012)
[22] Laroche E., First international conference on cable-driven parallel robots pp 353– (2012)
[23] Merlet J.-P, Les robots parallèles (1997)
[24] DOI: 10.1109/ROBOT.2008.4543805 · doi:10.1109/ROBOT.2008.4543805
[25] Ming A., International Journal of the Japan Society for Precision 28 (2) pp 131– (1994)
[26] DOI: 10.1109/TRO.2004.838029 · doi:10.1109/TRO.2004.838029
[27] DOI: 10.1109/CDC.2003.1272397 · doi:10.1109/CDC.2003.1272397
[28] DOI: 10.1016/j.conengprac.2005.06.011 · doi:10.1016/j.conengprac.2005.06.011
[29] Trevisani A., Cable-driven parallel Robots (2012)
[30] DOI: 10.1109/ROBOT.2010.5509991 · doi:10.1109/ROBOT.2010.5509991
[31] DOI: 10.1017/S0263574798000538 · doi:10.1017/S0263574798000538
[32] Walter E., Identification of parametric models from experimental data (1997)
[33] DOI: 10.5755/j01.mech.17.5.731 · doi:10.5755/j01.mech.17.5.731
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.