×

A review and evaluation of numerical tools for fractional calculus and fractional order controls. (English) Zbl 1367.93205

Summary: In recent years, as fractional calculus becomes more and more broadly used in research across different academic disciplines, there are increasing demands for the numerical tools for the computation of fractional integration/differentiation, and the simulation of fractional order systems. Time to time, being asked about which tool is suitable for a specific application, the authors decide to carry out this survey to present recapitulative information of the available tools in the literature, in hope of benefiting researchers with different academic backgrounds. With this motivation, the present article collects the scattered tools into a dashboard view, briefly introduces their usage and algorithms, evaluates the accuracy, compares the performance, and provides informative comments for selection.

MSC:

93B40 Computational methods in systems theory (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1109/TAC.2005.860290 · Zbl 1366.93148
[2] DOI: 10.1109/NAECON.1990.112826
[3] DOI: 10.2514/3.20641
[4] Barbosa R., Acta Polytechnica Hung, 3 (4) pp 5– (2006)
[5] Barrowes B., Generalized hypergeometric function [Online] (Matlab Central) (2005)
[6] Bode H, Network analysis and feedback amplifier design (1945)
[7] DOI: 10.1177/1077546307087435
[8] Brančík L, An improved numerical inversion of two-dimensional Laplace transforms with application to transient analysis of transmission lines (1999)
[9] Brančík L, Utilization of quotient-difference algorithm in FFT-based numerical ILT method (2001)
[10] DOI: 10.1142/7709
[11] Chaurasia V., SCIENTIA Series A: Mathematical Sciences, 20 pp 113– (2010)
[12] DOI: 10.1109/TCSII.2011.2168022
[13] DOI: 10.1016/S0165-1684(03)00188-9 · Zbl 1145.93423
[14] DOI: 10.1145/294833.294839
[15] DOI: 10.1007/978-3-642-23117-9 · Zbl 1237.94016
[16] DOI: 10.1137/0903022 · Zbl 0482.65066
[17] DOI: 10.1016/0927-5398(93)90006-D
[18] DOI: 10.1007/978-1-4684-9930-8
[19] DOI: 10.1109/MCS.2008.927332
[20] DOI: 10.1109/JETCAS.2013.2272836
[21] Lachhab N., Fractional order PID controller (FOPID) – toolbox (2013)
[22] DOI: 10.1007/978-3-319-06926-5 · Zbl 1291.00051
[23] DOI: 10.1109/TCST.2009.2019120
[24] DOI: 10.1109/ACC.2014.6858830
[25] Liang J., Control of linear time-invariant distributed parameter systems: From integer order to fractional order (2005)
[26] DOI: 10.1023/A:1016586905654 · Zbl 1018.93007
[27] Luo Y., Fractional order motion controls (2013)
[28] DOI: 10.1016/j.cnsns.2011.01.020 · Zbl 1221.65076
[29] DOI: 10.1016/j.cnsns.2010.05.027 · Zbl 1221.26002
[30] Magin R.L, Fractional calculus in bioengineering (2006)
[31] Malkiel B.G., A random walk down wall street, 7. ed. (1999)
[32] DOI: 10.2478/s13540-013-0042-7 · Zbl 1312.65015
[33] Miller K.S., An introduction to the fractional calculus and fractional differential equations, 1. ed. (1993) · Zbl 0789.26002
[34] Monje C.A., Fractional order systems and controls: Fundamentals and applications (2006)
[35] DOI: 10.1016/S0141-9331(03)00113-3 · Zbl 05461983
[36] DOI: 10.1109/81.817385
[37] Ozaktas H.M., The fractional Fourier transform (2001)
[38] DOI: 10.5772/19412
[39] DOI: 10.1007/978-3-642-18101-6
[40] DOI: 10.1109/IECON.2009.5414720
[41] Podlubny I, Fractional differential equations (1999)
[42] DOI: 10.1109/9.739144 · Zbl 1056.93542
[43] Podlubny I., Factional Calculus and Applied Analysis, 29 (4) pp 281– (2000)
[44] Prabhakar T., Yokohama Mathematical Journal, 19 pp 7– (1971)
[45] DOI: 10.1007/978-1-4020-6042-7 · Zbl 1116.00014
[46] DOI: 10.1016/j.jfranklin.2010.11.009 · Zbl 1210.65201
[47] Tepljakov A., Fractional-order calculus based identification and control of linear dynamic systems (2011) · Zbl 1383.34001
[48] Tricaud C., Solving fractional order optimal control problems in RIOTS_95 – a general-purpose optimal control problem solver (2008)
[49] DOI: 10.1109/ACC.2009.5160677
[50] DOI: 10.1049/ip-cta:20045063
[51] DOI: 10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C · Zbl 0924.65135
[52] DOI: 10.1142/6175
[53] West, B.J., Turalska, M. & Grigolini, P. (2014). Complex networks: From social crises to neuronal avalanches (pp. 509–524). Hoboken, NJ: Wiley-VCH Verlag GmbH.
[54] DOI: 10.1142/9260 · Zbl 1305.93005
[55] Xue D., System simulation techniques with Matlab and Simulink (2014)
[56] Xue D., Linear feedback control – analysis and design with Matlab 6.5 (2009)
[57] DOI: 10.1016/j.automatica.2014.10.027 · Zbl 1309.93041
[58] Yousfi N., International Journal of Computer Applications, 45 pp 6– (2012)
[59] Zhao T., Fractional order nonlinear model predictive control using RIOTS_95 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.