×

zbMATH — the first resource for mathematics

Mathematical models as research data via flexiformal theory graphs. (English) Zbl 1367.68307
Geuvers, Herman (ed.) et al., Intelligent computer mathematics. 10th international conference, CICM 2017, Edinburgh, UK, July 17–21, 2017. Proceedings. Cham: Springer (ISBN 978-3-319-62074-9/pbk; 978-3-319-62075-6/ebook). Lecture Notes in Computer Science 10383. Lecture Notes in Artificial Intelligence, 224-238 (2017).
Summary: Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines. It is common to categorize the involved numerical data and to some extent the corresponding scientific software as research data. But both have their origin in mathematical models, therefore any holistic approach to research data in MMS should cover all three aspects: data, software, and models. While the problems of classifying, archiving and making accessible are largely solved for data and first frameworks and systems are emerging for software, the question of how to deal with mathematical models is completely open.{
}In this paper we propose a solution – to cover all aspects of mathematical models: the underlying mathematical knowledge, the equations, boundary conditions, numeric approximations, and documents in a flexiformal framework, which has enough structure to support the various uses of models in scientific and technology workflows.{
}Concretely we propose to use the OMDoc/MMT framework to formalize mathematical models and show the adequacy of this approach by modeling a simple, but non-trivial model: van Roosbroeck’s drift-diffusion model for one-dimensional devices. This formalization – and future extensions – allows us to support the modeler by e.g., flexibly composing models, visualizing model pathway diagrams, and annotating model equations in documents as induced from the formalized documents by flattening. This directly solves some of the problems in treating mathematical models as “research data” and opens the way towards more MKM services for models.
For the entire collection see [Zbl 1364.68010].
MSC:
68T30 Knowledge representation
00A71 General theory of mathematical modeling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bandelow, U., Gajewski, H., Hünlich, R.: Fabry-perot lasers: thermodynamics-based modeling. In: Piprek, J. (ed.) Optoelectronic Devices. Springer, New York (2005)
[2] Brase, J.: DataCite - A global registration agency for research data. In: Fourth International Conference on Cooperation and Promotion of Information Resources in Science and Technology, COINFO 2009, pp. 257–261. IEEE (2009)
[3] Farrell, P., et al.: Numerical methods for drift-diffusion models. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Models, vol. 2. Taylor & Francis, Berlin (2016). (WIAS Preprint No. 2263. To appear, 2017)
[4] Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76(6), 769–789 (1949) · Zbl 0038.13302
[5] Fischer, A., et al.: Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13(11), 2461–2468 (2012)
[6] Deutsche Forschungsgemeinschaft. DFG Guidelines on the Handling of Research Data. Adopted by the Senate of the DFG at September 30 (2015)
[7] Greuel, G.-M., Sperber, W.: swMATH – an information service for mathematical software. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 691–701. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44199-2_103 · Zbl 1434.68656
[8] Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11(10), 455–465 (1964)
[9] Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement leveld. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 65–80. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31374-5_5 · Zbl 1278.68293
[10] Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524 (2003)
[11] Iancu, M.: Towards flexiformal mathematics. Ph.D. thesis. Jacobs University, Bremen (2017)
[12] Kaschura, F., et al.: Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode. J. Appl. Phys. 120(9), 094501 (2016)
[13] Kohlhase, M., Iancu, M.: Searching the Space of Mathematical Knowledge. In: Sojka, P., Kohlhase, M. (eds.) DML and MIR 2012. Masaryk University, Brno (2012). http://kwarc.info/kohlhase/papers/mir12.pdf · Zbl 1403.68280
[14] Kohlhase, M., et al.: A Case study for active documents and formalization in math models: the van Roosbroeck Model. https://mathhub.info/MitM/models
. Accessed 5 Feb 2017
[15] Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). http://omdoc.org/pubs/omdoc1.2.pdf
[16] Kohlhase, M.: The flexiformalist manifesto. In: Voxronkov, A., et al. (eds.) 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pp. 30–36. IEEE Press, Timisoara (2013). http://kwarc.info/kohlhase/papers/synasc13.pdf
[17] Kraft, A.: RADAR-A repository for long tail data. In: Proceedings of the IATUL Conferences. Paper 1 (2015)
[18] Koprucki, T., Tabelow, K.: Mathematical models: a research data category? In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 423–428. Springer, Cham (2016). doi: 10.1007/978-3-319-42432-3_53 · Zbl 1434.68650
[19] Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329 (2011) · Zbl 1227.35161
[20] MitM: The Math-in-the-Middle Ontology. https://mathhub.info/MitM
. Accessed 5 Feb 2017
[21] Modelica Association. Modelica-A Unified Object-Oriented Language for Physical Systems Modeling-Language Specification Version 3.3 Revision 1, 2014 (2014). http://www.modelica.org
[22] MPDHub wiki. https://github.com/WIAS-BERLIN/MPDHub/wiki/
. Accessed 22 Mar 2017
[23] Pfenning, F.: Logical Frameworks. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Vol. I and II. Elsevier Science and MIT Press, North Holland (2001)
[24] Rabe, F.: Generic Literals. http://kwarc.info/frabe/Research/rabe_literals_14.pdf · Zbl 1417.68216
[25] Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput. (2014) · Zbl 1444.03121
[26] Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdf · Zbl 1358.68283
[27] Razum, M., Neumann, J., Hahn, M.: RADAR-Ein Forschungsdaten- repositorium als Dienstleistung für die Wissenschaft. Z. Bibl. Bibliographie 61(1), 18–27 (2014)
[28] The Systems Biology Markup Language. http://sbml.org
. Accessed 17 Mar 2017
[29] Schröter, J.: Zur Meta-Theorie der Physik. Walter de Gruyter GmbH & Co KG, Berlin (1996)
[30] Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien, New York (1984)
[31] Unified Modeling Language. http://www.uml.org/
. Accessed 13 Sep 2016
[32] Van Roosbroeck, W.: Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29(4), 560–607 (1950) · Zbl 1372.35295
[33] Wikipedia: List of physical quantities – Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=List_of_physical_quantities
. Accessed 22 Mar 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.