# zbMATH — the first resource for mathematics

Conditioned limit theorems for products of random matrices. (English) Zbl 1406.60015
Summary: Let $$g_{1},g_{2},\ldots$$ be i.i.d. random matrices in $$\mathrm{GL}(d,\mathbb {R})$$. For any $$n\geq 1$$ consider the product $$G_{n}=g_{n} \dotsc g_{1}$$ and the random process $$G_{n}v=g_{n}\dotsc g_{1}v$$ in $$\mathbb {R}^{d}$$ starting at point $$v\in \mathbb {R}^{d}\setminus \{0\} .$$ It is well known that under appropriate assumptions, the sequence $$\left(\log \| G_{n}v\|\right) _{n\geq 1}$$ behaves like a sum of i.i.d. r.v.’s and satisfies standard classical properties such as the law of large numbers, the law of iterated logarithm and the central limit theorem. For any vector v with $$\| v \| >1$$ denote by $$\tau _v$$ the first time when the random process $$G_{n}v$$ enters the closed unit ball in $$\mathbb {R}^{d}.$$ We establish the asymptotic as $$n\rightarrow +\infty$$ of the probability of the event $$\left\{\tau _{v}>n\right\}$$ and find the limit law for the quantity $$\frac{1}{\sqrt{n}} \log \| G_{n}v\|$$ conditioned that $$\tau _{v}>n$$.

##### MSC:
 60B20 Random matrices (probabilistic aspects) 60J05 Discrete-time Markov processes on general state spaces 60J45 Probabilistic potential theory
##### Keywords:
exit time; Markov chains; random matrices; spectral gap
Full Text:
##### References:
  Benoist, Y; Quint, JF, Central limit theorem for linear groups, Ann. Probab., 44, 1308-1340, (2016) · Zbl 1341.22006  Bertoin, J; Doney, RA, On conditioning a random walk to stay nonnegative, Ann. Probab., 22, 2152-2167, (1994) · Zbl 0834.60079  Borovkov, AA, On the asymptotic behavior of the distributions of first-passage times, I, Math. Notes, 75, 23-37, (2004) · Zbl 1108.60039  Borovkov, AA, On the asymptotic behavior of distributions of first-passage times, II, Math. Notes, 75, 322-330, (2004) · Zbl 1138.60035  Bolthausen, E, On a functional central limit theorem for random walk conditioned to stay positive, Ann. Probab., 4, 480-485, (1972) · Zbl 0336.60024  Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schödinger Operators. Birghä user, Boston (1985) · Zbl 0572.60001  Caravenna, F, A local limit theorem for random walks conditioned to stay positive, Probab. Theory Relat. Fields, 133, 508-530, (2005) · Zbl 1080.60045  Denisov, D; Wachtel, V, Conditional limit theorems for ordered random walks, Electron. J. Probab., 15, 292-322, (2010) · Zbl 1201.60040  Denisov, D; Wachtel, V, Random walks in cones, Ann. Probabil., 43, 992-1044, (2015) · Zbl 1332.60066  Doney, RA, Conditional limit theorems for asymptotically stable random walks, Z. Wahrscheinlichkeitsth., 70, 351-360, (1985) · Zbl 0573.60063  Eichelsbacher, P; König, W, Ordered random walks, Electron. J. Probab., 13, 1307-1336, (2008) · Zbl 1189.60092  Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New York (1964) · Zbl 0115.35308  Furstenberg, H; Kesten, H, Products of random matrices, Ann. Math. Stat., 31, 457-469, (1960) · Zbl 0137.35501  Garbit, R, A central limit theorem for two-dimensional random walk in a cone, Bull. de la SMF, 139, 271-286, (2011) · Zbl 1217.60026  Gordin, MI, The central limit theorem for stationary processes, Soviet Math. Dokl., 10, 1174-1176, (1969) · Zbl 0212.50005  Goldsheid, I; Margulis, G, Lyapunov indices of a product of random matrices, Russian Math. Surv., 44, 11-81, (1989) · Zbl 0705.60012  Grama, I; Page, É; Peigné, M, On the rate of convergence in the weak invariance principle for dependent random variables with applications to Markov chains, Colloquium Mathematicum, 134, 1-55, (2014) · Zbl 1302.60057  Guivarc’h, Y; Raugi, A, Frontière de furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete, 69, 187-242, (1985) · Zbl 0558.60009  Hennion, H, Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes, Z. Wahrsch. verw. Gebiete, 67, 265-278, (1984) · Zbl 0529.60025  Iglehart, DL, Functional central limit theorems for random walks conditioned to stay positive, Ann. Probab., 2, 608-619, (1974) · Zbl 0299.60053  Ionescu-Tulcea, CT; Marinescu, G, Théorie ergodique pour des classes d’opérations non completement continues, Ann. Math., 52, 140-147, (1950) · Zbl 0040.06502  Jan, C, Vitesse de convergence dans le TCL pour des chaines de Markov et certains processus associés à des systèmes dynamiques, C.R. Acad. Sci., 331, 395-398, (2000) · Zbl 0963.60018  Page, É, Théorèmes limites pour LES produits de matrices aléatoires, Spring. Lect. Not., 928, 258-303, (1982) · Zbl 0506.60019  Lévy, P.: Théorie de l’addition des variables aléatoires. Gauthier-Villars, Paris (1937) · Zbl 0016.17003  Norman, M.F.: Markov Processes and Learning Models. Academic Press, New York (1972) · Zbl 0262.92003  Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1999) · Zbl 0917.60006  Shimura, MA, Limit theorem for two-dimensional random walk conditioned to stay in a cone, Yokohama Math. J., 39, 21-36, (1991) · Zbl 0741.60068  Spitzer, F.: Principles of Random Walk, 2nd edn. Springer, Berlin (1976) · Zbl 0359.60003  Varopoulos, N.Th.: Potential theory in conical domains. Math. Proc. Camb. Phil. Soc. 125, 335-384 (1999) · Zbl 0918.31008  Vatutin, VA; Wachtel, V, Local probabilities for random walks conditioned to stay positive, Probabab. Theory Relat. Fields, 143, 177-217, (2009) · Zbl 1158.60014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.