×

zbMATH — the first resource for mathematics

A two-phase two-layer model for fluidized granular flows with dilatancy effects. (English) Zbl 1445.76087
Summary: We propose a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects, based on the closure relation proposed by S. Roux and F. Radjai [“Texture-dependent rigid plastic behaviour”, Physics of Dry Granular Media 350, 229–236 (1998; doi:10.1007/978-94-017-2653-5_13)]. This relation implies that the occurrence of dilation or contraction of the granular material depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations, with accurate asymptotic expansions. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. For an appropriate form of dilatancy law we obtain a depth-averaged model with a dissipative energy balance in accordance with the corresponding three-dimensional initial system.

MSC:
76T25 Granular flows
Software:
D-Claw
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T. B.; Jackson, R., A fluid mechanical description of fluidized beds, Ind. Engng Chem. Fundam., 6, 527-539, (1967)
[2] Andreini, N.; Ancey, C.; Epely-Chauvin, G., Granular suspension avalanches. II: plastic regime, Phys. Fluids, 25, (2013)
[3] Andreotti, B., Forterre, Y. & Pouliquen, O.2011Les milieux granulaires. In Physique Savoirs Actuels. EDP Sciences.
[4] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207, (1967)
[5] Bolton, M. D., The strength and dilatancy of sands, Gèotechnique, 36, 65-78, (1986)
[6] Bouchut, F.; Boyaval, S., Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids, Eur. J. Mech. (B/Fluids), 55, 116-131, (2016) · Zbl 1408.76020
[7] Bouchut, F.; Fernández-Nieto, E. D.; Mangeney, A.; Narbona-Reina, G., A two-phase shallow debris flow model with energy balance, ESAIM: Math. Modelling Numer. Anal., 49, 101-140, (2015) · Zbl 1310.76172
[8] Bouchut, F.; Mangeney-Castelnau, A.; Perthame, B.; Vilotte, J.-P., A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows, C. R. Acad. Sci. Paris série I, 336, 531-536, (2003) · Zbl 1044.35056
[9] Bouchut, F.; Westdickenberg, M., Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2, 359-389, (2004) · Zbl 1084.76012
[10] Brenner, H., Bi-velocity hydrodynamics, multicomponent fluids, Intern. J. Engng Sci., 47, 902-929, (2009) · Zbl 1213.76161
[11] Brenner, H., Diffuse volume transport in fluids, Phys. A, 389, 4026-4045, (2010)
[12] Cassar, C.; Nicolas, M.; Pouliquen, O., Submarine granular flows down inclined planes, Phys. Fluids, 17, (2005) · Zbl 1188.76024
[13] Da Cruz, F.; Emam, S.; Prochnow, M.; Roux, J.-N.; Chevoir, F., Rheophysics of dense granular materials: discrete simulation of plane shear flows, Phys. Rev. E, 72, (2005)
[14] Fernández-Nieto, E. D.; Bouchut, F.; Bresch, D.; Castro Díàz, M. J.; Mangeney, A., A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720-7754, (2008) · Zbl 1156.76015
[15] Forterre, Y.; Pouliquen, O., Flows of dense granular media, Annu. Rev. Fluid Mech., 40, 1-24, (2008) · Zbl 1136.76051
[16] On dense granular flows, Eur. Phys. J. E, 14, 341-365, (2004)
[17] George, D. L. & Iverson, R. M.2011 A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. In 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment Padua, Italy, 14-17 June 2011: Italian J. Engng Geology Environ, pp. 415-424. Universita La Sapienza.
[18] George, D. L.; Iverson, R. M., A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II: numerical predictions and experimental tests, Proc. R. Soc. Lond. A, 470, (2014) · Zbl 1371.86007
[19] Gray, J. M. N. T.; Edwards, A. N., A depth-averaged 𝜇(I)-rheology for shallow granular free-surface flows, J. Fluid Mech., 755, 503-534, (2014) · Zbl 1330.76137
[20] Iverson, R. M., The physics of debris flows, Rev. Geophys., 35, 245-296, (1997)
[21] Iverson, R. M., Landslide triggering by rain infiltration, Water Resour. Res., 36, 1897-1910, (2000)
[22] Iverson, R. M., Regulation of landslide motion by dilatancy and pore pressure feedback, J. Geophys. Res., 110, (2005)
[23] Iverson, R. M.2009Elements of an improved model of debris-flow motion. In Powders and Grains, American Institute of Physics, Proceedings, vol. 1145, pp. 9-16.
[24] Iverson, R. M.; George, D. L., A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I: physical basis, Proc. R. Soc. Lond. A, 470, (2014) · Zbl 1371.86008
[25] Iverson, R. M.; George, D. L., Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster, Gèotechnique, 66, 175-187, (2016)
[26] Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M., The perfect debris flow? Aggregated results from 28 large-scale experiments, J. Geophys. Res., 115, (2010)
[27] Jackson, R.1983Some Mathematical and Physical Aspects of Continuum Models for the Motion of Granular Materials, in Theory of Dispersed Multiphase Flow. Proceedings of an Advanced Seminar, Conducted by the Mathematics Research Center, the University of Wisconsin-Madison, 26-28 May 1982 (ed. Meyer, R. E.), pp. 291-337. Academic.
[28] Jackson, R., The Dynamics of Fluidized Particles, (2000), Cambridge University Press · Zbl 0956.76004
[29] Kowalski, J.; Mcelwaine, J. N., Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., 714, 434-462, (2013) · Zbl 1284.76393
[30] Lee, C. H.; Huang, C. J.; Chiew, Y. M., A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column, Phys. Fluids, 27, (2015)
[31] Lhuillier, D., Migration of rigid particles in non-Brownian viscous suspensions, Phys. Fluids, 21, (2009) · Zbl 1183.76304
[32] Mitchell, J. K., Fundamentals of Soil Behaviours, (1993), Wiley
[33] Montserrat, S.; Tamburrino, A.; Roche, O.; Niño, Y., Pore fluid pressure diffusion in defluidizing granular columns, J. Geophys. Res., 117, (2012)
[34] Morales De Luna, T., A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects, Math. Comput. Model., 47, 436-444, (2008) · Zbl 1130.76021
[35] Morris, J. F.; Boulay, F., Curvilinear flows of non-colloidal suspensions: the role of normal stresses, J. Rheol., 43, 1213-1237, (1999)
[36] Nott, P. R.; Guazzelli, E.; Pouliquen, O., The suspension balance model revisited, Phys. Fluids, 23, (2011)
[37] Pailha, M.; Nicolas, M.; Pouliquen, O., Initiation of underwater granular avalanches: influence of the initial volume fraction, Phys. Fluids, 20, (2008) · Zbl 1182.76585
[38] Pailha, M.; Pouliquen, O., A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135, (2009) · Zbl 1183.76906
[39] Pelanti, M.; Bouchut, F.; Mangeney, A., A Roe-type scheme for two-phase shallow granular flows over variable topography, ESAIM: Math. Modelling Numer. Anal., 42, 851-885, (2008) · Zbl 1391.76801
[40] Penel, Y.; Dellacherie, S.; Després, B., Coupling strategies for compressible-low Mach number flows, Math. Models Meth. Appl. Sci., 25, 1045-1089, (2015) · Zbl 1315.35174
[41] Pitman, E. B.; Le, L., A two-fluid model for avalanche and debris flows, Phil. Trans. R. Soc. Lond. A, 363, 1573-1601, (2005) · Zbl 1152.86302
[42] Reynolds, O., On the dilatancy of media composed of rigid particles in contact, Phil. Mag. 5, 20, 469-481, (1885)
[43] Richardson, J. F.; Zaki, W. N., Sedimentation and fluidization: Part I, Trans. Inst. Chem. Engrs, 32, 35-53, (1954)
[44] Rondon, L.; Pouliquen, O.; Aussillous, P., Granular collapse in a fluid: role of the initial volume fraction, Phys. Fluids, 23, (2011)
[45] Roux, S. & Radjai, F.1998Texture-dependent rigid plastic behaviour. In Physics of Dry Granular Media (ed. Herrmann, H. J.et al.), , vol. 350, pp. 229-236. Springer. doi:10.1007/978-94-017-2653-5_13
[46] Savage, S. B.; Hutter, K., The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, (1989) · Zbl 0659.76044
[47] Schaeffer, D. G.; Iverson, R., Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback, SIAM J. Appl. Maths, 69, 768-786, (2008) · Zbl 1165.74033
[48] Schofield, A. N.; Wroth, C. P., Critical State Soil Mechanics, (1968), McGraw-Hill Inc
[49] Vardoulakis, I., Dynamic stability analysis of undrained simple shear on water-saturated granular soils, Intl J. Numer. Anal. Mech. Geomech., 10, 177-190, (1986) · Zbl 0579.73109
[50] Wood, D. M., Soil Behavior and Critical State Soil Mechanics, (1990), Cambridge University Press · Zbl 0743.73023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.