Privacy-friendly forecasting for the smart grid using homomorphic encryption and the group method of data handling. (English) Zbl 1408.94928

Joye, Marc (ed.) et al., Progress in cryptology – AFRICACRYPT 2017. 9th international conference on cryptology in Africa, Dakar, Senegal, May 24–26, 2017. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10239, 184-201 (2017).
Summary: While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation.{
}Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly 21%.
For the entire collection see [Zbl 1362.94001].


94A60 Cryptography


NFLlib; GitHub; FV-NFLlib
Full Text: DOI


[1] Ahmad, A., Hassan, M., Abdullah, M., Rahman, H., Hussin, F., Abdullah, H., Saidur, R.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energ. Rev. 33, 102–109 (2014)
[2] Albrecht, M.: Complexity estimates for solving LWE (2000–2004). https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
[3] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015) · Zbl 1352.94023
[4] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45239-0_4 · Zbl 1317.94088
[5] Commission for Energy Regulation: Electricity smart metering customer behaviour trials (CBT) findings report. Technical Report CER11080a (2011). http://www.cer.ie/docs/000340/cer11080(a)(i).pdf
[6] Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE schemes. In: SAC 2016. LNCS. Springer (2016) · Zbl 1418.94039
[7] CryptoExperts: FV-NFLlib (2016). https://github.com/CryptoExperts/FV-NFLlib
[8] CryptoExperts, INP ENSEEIHT, and Quarkslab: NFLlib (2016). https://github.com/quarkslab/NFLlib
[9] Department of Energy & Climate Change: Smart metering implementation programme. Technical Report Third Annual Report on the Roll-out of Smart Meters (2014). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384190/smip_smart_metering_annual_report_2014.pdf
[10] Department of Energy, Climate Change: Smart metering implementation programme - data access, privacy. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/43043/4933-data-access-privacy-con-doc-smart-meter.pdf
[11] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for using homomorphic encryption for bioinformatics. Technical report, Technical report MSR-TR-2015-87, Microsoft Research (2015)
[12] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) International Conference on Machine Learning, vol. 48, pp. 201–210. JMLR.org (2016)
[13] Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31284-7_33 · Zbl 06080354
[14] European Commission: Commission recommendation of 9 on preparations for the roll-out of smart metering systems. Official Journal of the European Union (2012). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012H0148
[15] European Commission: Benchmarking smart metering deployment in the EU-27 with a focus on electricity. Technical Report 365, June 2014. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0356&from=EN
[16] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive 2012, 144 (2012)
[17] Koo, B.G., Lee, S.W., Kim, W., Park, J.H.: Comparative study of short-term electric load forecasting. In: Conference on Intelligent Systems, Modelling and Simulation, pp. 463–467, January 2014
[18] Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22444-7_15 · Zbl 05960783
[19] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009) · Zbl 1304.94059
[20] Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)
[21] Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J., Lloret, J., Massana, J.: A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tutorials 16(3), 1460–1495 (2014)
[22] Ivakhnenko, A.: Heuristic self-organization in problems of engineering cybernetics. Automatica 6(2), 207–219 (1970)
[23] Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids - a survey of options. Technical Report MSR-TR-2012-119, November 2012. http://research.microsoft.com/apps/pubs/default.aspx?id=178055
[24] Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22263-4_10 · Zbl 05970453
[25] Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: Smart Grid Communication, pp. 327–332. IEEE (2010)
[26] Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of training neural networks. In: Advances in Neural Information Processing Systems, pp. 855–863 (2014)
[27] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_1 · Zbl 1279.94099
[28] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 35 (2013). Article 43 · Zbl 1281.68140
[29] Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). doi: 10.1007/978-3-319-29485-8_20 · Zbl 1334.94055
[30] Molina-Markham, A., Shenoy, P.J., Fu, K., Cecchet, E., Irwin, D.E.: Private memoirs of a smart meter. In: Ruzzelli, A.G. (ed.) Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 61–66. ACM (2010)
[31] Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_16 · Zbl 0933.94027
[32] Recommendation to the European Commission: Essential regulatory requirements and recommendations for data handling, data safety, and consumer protection. Technical Report version 1.0 (2011). https://ec.europa.eu/energy/sites/ener/files/documents/Recommendations
[33] Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Workshop on Privacy in the Electronic Society, WPES 2011, pp. 49–60. ACM (2011)
[34] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)
[35] Smart Grid Coordination Group: Smart grid information security, November 2012. http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group.1_security.pdf
[36] Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomputing 72(1), 625–629 (2008) · Zbl 05718858
[37] The Smart Grid Interoperability Panel - Smart Grid Cybersecurity Committee: Guidelines for smart grid cybersecurity: volume 1 - smart grid cybersecurity strategy, architecture, and high-level requirements. Technical Report NISTIR 7628 Rev 1 (2014). http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf
[38] Veit, A., Goebel, C., Tidke, R., Doblander, C., Jacobsen, H.-A.: Household electricity demand forecasting: benchmarking state-of-the-art methods. In: Conference on future energy systems, pp. 233–234. ACM (2014)
[39] Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K.E., Naehrig, M.: Crypto-nets: neural networks over encrypted data. CoRR, abs/1412.6181 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.