×

The state of the second part of Hilbert’s fifth problem. (English) Zbl 0676.39004

Hilbert stated the second part of his fifth problem as follows: “In particular the functional equations treated by Abel with so much ingenuity... and other equations occuring in the literature of mathematics, do not directly involve anything which necessitates the requirement of the differentiability of the accompanying functions... In all these cases, then the problem arises: In how far are the assertions which we can make in the case of differentiable functions true under proper modifications without this assumption?”
The author concentrates on Abel’s results and reports where the Hilbert program has been carried through: the differentiability or continuity conditions used by Abel have been successfully replaced by weaker conditions.
Reviewer: M.C.Zdun

MSC:

39B62 Functional inequalities, including subadditivity, convexity, etc.
39-02 Research exposition (monographs, survey articles) pertaining to difference and functional equations
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
01A65 Development of contemporary mathematics
39B12 Iteration theory, iterative and composite equations
39B99 Functional equations and inequalities
39B52 Functional equations for functions with more general domains and/or ranges
Full Text: DOI

References:

[1] Jean Aczél, Sur les opérations définies pour nombres réels, Bull. Soc. Math. France 76 (1948), 59 – 64 (French). · Zbl 0033.11002
[2] J. Aczél, Über die Differenzierbarkeit der integrierbaren Lösungen gewisser Funktionalgleichungen, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3 – 4 (1960/1961), 5 – 8 (German).
[3] J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. · Zbl 0139.09301
[4] J. Aczél, A short course on functional equations, Theory and Decision Library. Series B: Mathematical and Statistical Methods, D. Reidel Publishing Co., Dordrecht, 1987. Based upon recent applications to the social and behavioral sciences. · Zbl 0607.39002
[5] J. Aczél and J. K. Chung, Integrable solutions of functional equations of a general type, Studia Sci. Math. Hungar. 17 (1982), no. 1-4, 51 – 67. · Zbl 0553.39005
[6] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, vol. 31, Cambridge University Press, Cambridge, 1989. With applications to mathematics, information theory and to the natural and social sciences. · Zbl 0685.39006
[7] J. Aczél and A. D. Wallace, A note on generalizations of transitive systems of transformations, Colloq. Math. 17 (1967), 29 – 34. · Zbl 0148.01501
[8] W. Benz, Ein Beitrag zu einem Problem von Herrn Fenyö, Abh. Math. Sem. Univ. Hamburg 57 (1987), 21 – 25 (German). · Zbl 0637.39004 · doi:10.1007/BF02941595
[9] J. K. Chung, Pl. Kannappan, and C. T. Ng, A generalization of the cosine-sine functional equation on groups, Linear Algebra Appl. 66 (1985), 259 – 277. · Zbl 0564.39002 · doi:10.1016/0024-3795(85)90137-5
[10] Z. Daróczy and H. Kiesewetter, Eine Funktionalgleichung von Abel und die Grundgleichung der Information, Period. Math. Hungar. 4 (1973), 25 – 28 (German). · Zbl 0268.39005 · doi:10.1007/BF02018033
[11] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. · Zbl 0137.02001
[12] A. Járai, On regular solutions of functional equations, Aequationes Math. 30 (1986), no. 1, 21 – 54. · Zbl 0589.39012 · doi:10.1007/BF02189909
[13] H. Kiesewetter, Eine Bemerkung über partielle Differentiationen bei N. H. Abel, Publ. Math. Debrecen 5 (1958), 265 – 268 (German). · Zbl 0095.26903
[14] H. Kiesewetter, Struktur linearer Funktionalgleichungen im Zusammenhang mit dem Abelschen Theorem, J. Reine Angew. Math. 206 (1961), 113 – 171 (German). · Zbl 0100.32802 · doi:10.1515/crll.1961.206.113
[15] Helmut Kiesewetter, Über die arc tan-Funktionalgleichung, ihre mehrdeutigen, stetigen Lösungen und eine nichtstetige Gruppe, Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen 14 (1965), 417 – 421 (German). · Zbl 0152.14401
[16] J. F. C. Kingman, On the algebra of queues, J. Appl. Probability 3 (1966), 285 – 326. · Zbl 0152.16604
[17] Marek Kuczma, Functional equations in a single variable, Monografie Matematyczne, Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. · Zbl 0196.16403
[18] Marek Kuczma, Bogdan Choczewski, and Roman Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, vol. 32, Cambridge University Press, Cambridge, 1990. · Zbl 0703.39005
[19] P. M. Lee, On the axioms of information theory, Ann. Math. Statist. 35 (1964), 415 – 418. · Zbl 0124.11307 · doi:10.1214/aoms/1177703765
[20] John Boris Miller, Baxter operators and endomorphisms on Banach algebras, J. Math. Anal. Appl. 25 (1969), 503 – 520. · Zbl 0181.14202 · doi:10.1016/0022-247X(69)90251-0
[21] R. Craigen and Z. Páles, The associativity equation revisited, Aequationes Math. 37 (1989), no. 2-3, 306 – 312. · Zbl 0676.39005 · doi:10.1007/BF01836453
[22] F. Radó and John A. Baker, Pexider’s equation and aggregation of allocations, Aequationes Math. 32 (1987), no. 2-3, 227 – 239. · Zbl 0625.39007 · doi:10.1007/BF02311311
[23] Maciej Sablik, The continuous solution of a functional equation of Abel, Aequationes Math. 39 (1990), no. 1, 19 – 39. · Zbl 0694.39004 · doi:10.1007/BF01833940
[24] Peter Volkmann and Herbert Weigel, Über ein Problem von Fenyő, Aequationes Math. 27 (1984), no. 1-2, 135 – 149 (German). · Zbl 0544.39006 · doi:10.1007/BF02192664
[25] M. C. Zdun, On integrable solutions of Abel’s functional equation, Glasnik Mat. Ser. III 12(32) (1977), no. 1, 49 – 59 (English, with Serbo-Croatian summary). · Zbl 0375.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.