zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Interior path following primal-dual algorithms. I: Linear programming. (English) Zbl 0676.90038
Authors’ abstract: “We describe a primal-dual interior point algorithm for linear programming problems which requires a total of O($\sqrt{n}L)$ number of iterations, where L is the input size. Each iteration updates a penalty parameter and finds the Newton direction associated with the Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier function problem. The algorithm is based on the path following idea.” [For part II see the authors, ibid. A 44, No.1, 43-66 (1989; Zbl 0676.90039).]
Reviewer: N.Deng

90C05Linear programming
65K05Mathematical programming (numerical methods)
68Q25Analysis of algorithms and problem complexity
Full Text: DOI
[1] D.A. Bayer and J.C. Lagarias, ”The nonlinear geometry of linear programming,” manuscripts, AT&T Bell Laboratories (Murray Hill, NJ, 1986), to appear inTransactions of the American Mathematical Society. · Zbl 0671.90045
[2] A. Fiacco and G. McCormick,Nonlinear Programming: Sequential Unconstrained Minimization Techniques (John Wiley and Sons, New York, 1968). · Zbl 0193.18805
[3] K.R. Frisch, ”The logarithmic potential method of convex programming,” unpublished manuscript, University Institute of Economics (Oslo, Norway, 1955).
[4] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, ”On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method,”Mathematical Programming 36 (1986) 183--209. · Zbl 0624.90062 · doi:10.1007/BF02592025
[5] C.C. Gonzaga, ”An algorithm for solving linear programming problems in O(n 3 L) operations,” Memorandum Number UCB/ERL M87/10, Electronics Research Laboratory, Universtiy of California (Berkeley, CA, March, 1987).
[6] N. Karmarkar, ”A new polynomial time algorithm for linear programming,”Combinatorica 4 (1984) 373--395. · Zbl 0557.90065 · doi:10.1007/BF02579150
[7] N. Karmarkar, Talk at the University of California at Berkeley (Berkeley, CA, 1984).
[8] M. Kojima, S. Mizuno and A. Yoshise, ”A primal-dual interior point algorithm for linear programming,” Report No. B-188, Department of Information Sciences, Tokyo Institute of Technology (Tokyo, Japan, February, 1987). · Zbl 0708.90049
[9] N. Megiddo, ”Pathways to the optimal set in linear programming,” Research Report, IBM Almaden Research Center (San Jose, CA, 1986). · Zbl 0612.90082
[10] C.R. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity (Prentice-Hall, Englewood Cliffs, New Jersey, 1982). · Zbl 0503.90060
[11] J. Renegar, ”A polynomial-time algorithm based on Newton’s method for linear programming,”Mathematical Programming 40 (1988) 59--93. · Zbl 0654.90050 · doi:10.1007/BF01580724
[12] P.M. Vaidya, ”An algorithm for linear programming which requires O(((m + n)n 2+(m + n) 1.5 n)L) arithmetic operations,” preprint, AT&T Bell Laboratories (Murray Hill, NJ, 1987). · Zbl 0708.90047