Ellahiani, Idriss; Essoufi, El-Hassan; Tilioua, Mouhcine Global existence of weak solutions to a three-dimensional fractional model in magneto-viscoelastic interactions. (English) Zbl 1483.74032 Bound. Value Probl. 2017, Paper No. 122, 20 p. (2017). Summary: In this paper, we prove the existence of global weak solutions for a model described by the fractional Heisenberg equation for the magnetization field and the viscoelastic integro-differential equation for the displacements. We study the three-dimensional case. The demonstration of the existence of weak solution is based on the method of Faedo-Galerkin; and to get the convergence of the nonlinear terms, we introduce the commutator structure. Cited in 2 Documents MSC: 74G22 Existence of solutions of equilibrium problems in solid mechanics 74D10 Nonlinear constitutive equations for materials with memory 74F15 Electromagnetic effects in solid mechanics 35D30 Weak solutions to PDEs 35R11 Fractional partial differential equations Keywords:three-dimensional periodical fractional Heisenberg equation; equation of viscoelasticity; weak solution; commutator estimates × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Andreozzi, L: Analisi dinamico-meccanica in sistemi viscoelastici. VII Scuola Nazionale di Fisica della Materia dell’INFM, Pisa (1997) · Zbl 0671.35066 [2] Carillo, S, Valente, V, Vergara-Caffarelli, G: An existence theorem for the magneto-viscoelastic problem. Discrete Contin. Dyn. Syst., Ser. S 5(3), 435-447 (2012) · Zbl 1242.74033 [3] Stein, EM: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Princeton University Press, Princeton (1970) · Zbl 0207.13501 [4] Guo, B, Zeng, M: Solutions for the fractional Landau-Lifshitz equation. J. Math. Anal. Appl. 361(1), 131-138 (2010) · Zbl 1179.35320 · doi:10.1016/j.jmaa.2009.09.009 [5] Pu, X, Guo, B: The fractional Landau-Lifshitz-Gilbert equation and the heat flow of harmonic maps. Calc. Var. Partial Differ. Equ. 42(1-2), 1-19 (2011) · Zbl 1229.35284 · doi:10.1007/s00526-010-0377-4 [6] Pu, X, Guo, B: Well-posedness for the fractional Landau-Lifshitz equation without Gilbert damping. Calc. Var. Partial Differ. Equ. 46(3-4), 441-460 (2013) · Zbl 1260.35229 · doi:10.1007/s00526-011-0488-6 [7] Valente, V, Vergara Caffarelli, G: On the dynamics of magneto-elastic interactions: existence of solutions and limit behaviors. Asymptot. Anal. 51, 319-333 (2007) · Zbl 1125.35100 [8] Chipot, M, Shafrir, I, Valente, V, Vergara Caffarelli, G: On a hyperbolic-parabolic system arising in magnetoelasticity. J. Math. Anal. Appl. 352(1), 120-131 (2009) · Zbl 1173.35007 · doi:10.1016/j.jmaa.2008.04.013 [9] Chipot, M, Shafrir, I, Valente, V, Vergara Caffarelli, G: A nonlocal problem arising in the study of magneto-elastic interactions. Boll. Unione Mat. Ital. 1(1), 197-221 (2008) · Zbl 1164.49013 [10] Ellahiani, I, Essoufi, EH, Tilioua, M: Global existence of weak solutions to a fractional model in magnetoelastic interactions. Abstr. Appl. Anal. 2016, Article ID 9238948 (2016) · Zbl 1470.74027 · doi:10.1155/2016/9238948 [11] Ellahiani, I, Essoufi, EH, Tilioua, M: Global existence of weak solutions to a three-dimensional fractional model in magnetoelastic interactions. Submitted · Zbl 1483.74032 [12] Pu, X, Guo, B, Zhang, J: Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete Contin. Dyn. Syst., Ser. B 14(1), 199-207 (2010) · Zbl 1197.35305 · doi:10.3934/dcdsb.2010.14.199 [13] Temam, R: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1997) · Zbl 0871.35001 [14] Lions, JL: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969) · Zbl 0189.40603 [15] Coifman, RR; Meyer, Y., Nonlinear Harmonic Analysis, Operator Theory and P.D.E, 3-45 (1986), Princeton · Zbl 0623.47052 [16] Kato, T: Liapunov Functions and Monotonicity in the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 1450. Springer, Berlin (1990) · Zbl 0727.35107 [17] Kato, T, Ponce, G: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1988) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.