Yamane, Hiroyuki A Poincaré-Birkhoff-Witt theorem for the quantum group of type \(A_ n\). (English) Zbl 0677.17011 Proc. Japan Acad., Ser. A 64, No. 10, 385-386 (1988). The author describes a linear basis for the \(q\)-analogue \(U_ q(G)\) of the universal enveloping algebra in case \(G={\mathfrak sl}_{N+1}({\mathbb C})\). It follows, that \(U_ q({\mathfrak sl}_{N+1}({\mathbb C}))\) is a left (right) Noetherian ring without zero divisors provided \(q(q^ 8-1)\neq 0\). Reviewer: H. Boseck (Greifswald) Cited in 2 Documents MSC: 17B35 Universal enveloping (super)algebras 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 81Q99 General mathematical topics and methods in quantum theory Keywords:quantum groups; \(q\)-deformation of enveloping algebras; Hopf algebra; explicit linear basis; analogue of Poincaré-Birkhoff-Witt theorem; triangular decomposition PDF BibTeX XML Cite \textit{H. Yamane}, Proc. Japan Acad., Ser. A 64, No. 10, 385--386 (1988; Zbl 0677.17011) Full Text: DOI Euclid References: [1] V. G. Drinfeld: Hopf algebra and the quantum Yang-Baxter equation. Soviet Math. Dolk., 32, 254-258 (1985). · Zbl 0588.17015 [2] V. G. Drinfeld: Quantum groups. Proc. Int. Congr. Math., Berkeley, vol. 1 (1986) ; Amer. Math. Soc, pp. 798-820 (1988). [3] Y. Izumi: On a g-analogue of the universal enveloping algebra of the simple Lie algebra of type AN. Master thesis, Osaka University (1988) (in Japanese). [4] M. Jimbo: A ^-difference analogue of U(Q) and the Yang-Baxter equation. Lett. Math. Phys., 10, 63-69 (1985). · Zbl 0587.17004 · doi:10.1007/BF00704588 [5] V. G. Kac: Infinite Dimensional Lie Algebra. Progress in Mathematics, vol. 44, Birkhauser, Boston-Basel-Stuttgart (1983). · Zbl 0537.17001 [6] G. Lusztig: Quantum deformations of certain simple modules over enveloping algebra. Advances in Math., 70, 237-249 (1988). · Zbl 0651.17007 · doi:10.1016/0001-8708(88)90056-4 [7] M. Rosso: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys., 117, 581-593 (1988). · Zbl 0651.17008 · doi:10.1007/BF01218386 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.