Ahmed, Ahmed; Ahmedatt, Taghi; Hjiaj, Hassane; Touzani, Abdelfattah Existence of infinitely many weak solutions for some quasilinear \(\vec{p}(x)\)-elliptic Neumann problems. (English) Zbl 06770144 Math. Bohem. 142, No. 3, 243-262 (2017). Summary: We consider the following quasilinear Neumann boundary-value problem of the type \[ \begin{cases} -\sum_{i=1}^N\frac{\partial}{\partial x_i}a_i\Big( x,\frac{\partial u}{\partial x_i}\Big) +b(x)|u|^{p_0(x)-2}u=f(x,u)+g(x,u) &\text{in} \;\Omega ,\\ \quad\dfrac{\partial u}{\partial\gamma}=0 &\text{on} \;\partial\Omega.\end{cases} \] We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples. Cited in 2 Documents MSC: 35J20 Variational methods for second-order elliptic equations 35J62 Quasilinear elliptic equations Keywords:Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space PDF BibTeX XML Cite \textit{A. Ahmed} et al., Math. Bohem. 142, No. 3, 243--262 (2017; Zbl 06770144) Full Text: DOI