Zhu, Zhanmin Some results on quasi-Frobenius rings. (English) Zbl 1449.16037 Commentat. Math. Univ. Carol. 58, No. 2, 147-151 (2017). Summary: We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings, and some characterizations improve some results on quasi-Frobenius rings. MSC: 16L60 Quasi-Frobenius rings 16D50 Injective modules, self-injective associative rings 16L30 Noncommutative local and semilocal rings, perfect rings 16P60 Chain conditions on annihilators and summands: Goldie-type conditions 16P70 Chain conditions on other classes of submodules, ideals, subrings, etc.; coherence (associative rings and algebras) Keywords:min-injective ring; YJ-injective ring; 2-injective ring; JGP-injective ring; quasi-Frobenius ring PDF BibTeX XML Cite \textit{Z. Zhu}, Commentat. Math. Univ. Carol. 58, No. 2, 147--151 (2017; Zbl 1449.16037) Full Text: DOI References: [1] Björk J. E., Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 63-73 · Zbl 0211.36401 [2] Camillo V.; Yousif M. F., Continuous rings with ACC on annihilators, Canad. Math. Bull. 34 (1991), no. 4, 462-464 · Zbl 0767.16004 [3] Chen J. L.; Zhou Y. Q.; Zhu Z. M., GP-injective rings need not be P-injective, Comm. Algebra 33 (2005), no. 7, 2395-2402 · Zbl 1076.16003 [4] Nam S. B.; Kim N. K.; Kim J. Y., On simple GP-injective modules, Comm. Algebra 23 (1995), no. 14, 5437-5444 · Zbl 0840.16006 [5] Nicholson W. K.; Yousif M. F., Principally injective rings, J. Algebra 174 (1995), no. 1, 77-93 · Zbl 0839.16004 [6] Nicholson W. K.; Yousif M. F., Mininjective rings, J. Algebra 187 (1997), no. 2, 548-578 · Zbl 0879.16002 [7] Nicholson W. K.; Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003 · Zbl 1042.16009 [8] Rutter E. A., Rings with the principle extension property, Comm. Algebra 3 (1975), no. 3, 203-212 · Zbl 0298.16015 [9] Yousif M. F.; Zhou Y. Q., Rings for which certain elements have the principal extension property, Algebra Colloq. 10 (2003), no. 4, 501-512 · Zbl 1040.16004 [10] Yue Chi Ming R., On regular rings and self-injective rings II, Glasnik Mat. 18 (1983), no. 2, 221-229 · Zbl 0528.16006 [11] Yue Chi Ming R., On quasi-Frobeniusean and Artinian rings, Publ. Inst. Math. (Beograd) (N.S.) 33 (1983), no. 47, 239-245 · Zbl 0521.16009 [12] Yue Chi Ming R., On regular rings and artinian rings II, Riv. Math. Univ. Parma 11 (1985), no. 4, 101-109 · Zbl 0611.16011 [13] Yue Chi Ming R., On p-injectivity, YJ-injectivity and quasi-Frobenius rings, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 33-42 · Zbl 1068.16004 [14] Yue Chi Ming R., On YJ-injectivity and annihilators, Georgian Math. J. 12 (2005), no. 3, 573-581 · Zbl 1090.16002 [15] Zhou Y. Q., Rings in which certain right ideal are direct summands of annihilators, J. Aust. Math. Soc. 73 (2002), no. 3, 335-346 · Zbl 1020.16003 [16] Zhu Z. M., Almost MGP-injective rings, Ukrainian Math. J. 65 (2014), no. 11, 1634-1641 · Zbl 1311.16001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.