## Bilinear forms with Kloosterman sums and applications.(English)Zbl 1441.11194

This paper concerns bilinear sums involving generalized Kloosterman sums (hyper-Kloosterman sums) to prime modulus $$p$$, given by $\mathrm{Kl}_k(a;p)=p^{-(k-1)/2}\sum_{1\le x_1,\ldots,x_{k-1}<p}e_p(x_1+\ldots+x_{k-1}+a \overline{x_1\ldots x_{k-1}}),$ where $$p\nmid a$$. The sums considered take the form $\Sigma=\sum_{m\in\mathcal{M},\,n\in\mathcal{N}}\alpha_m\beta_n\mathrm{Kl}_k(amn;p),$ where $$\alpha_m$$ and $$\beta_n$$ are complex coefficients and $$\mathcal{M}=\{1,2,\ldots,M\}$$ and $$\mathcal{N}=\{N_0+1,N_0+2,\ldots,N_0+N\}$$ for positive integers $$M,N<p$$.
The first, most general, result states that if $$p$$ is prime and $$M\le Np^{1/4}$$ and $$p^{1/4}<MN<p^{5/4}$$ then for any fixed $$\varepsilon>0$$ one has $\Sigma\ll_{\varepsilon,k}p^{\varepsilon}||\alpha||_2 ||\beta||_2(MN)^{1/2}\left(M^{-1/2}+(MN)^{-3/16}p^{11/64}\right),\tag{$$\ast$$}$ where $||\alpha||_k=\left(\sum|\alpha_m|^k\right)^{1/k}$ is the $$\ell^k$$-norm. For comparison, the trivial bound would be $$||\alpha||_2||\beta||_2(MN)^{1/2}$$, while a relatively straightforward argument yields $\Sigma\ll_{k}||\alpha||_2 ||\beta||_2(MN)^{1/2}\left(p^{-1/4}+M^{-1/2}+N^{-1/2}p^{1/4}\right).$ This latter bound is trivial when $$N\ll p^{1/2}$$, and the significance of the new result (*) is that it is non-trivial for a range including the case $$M=N=p^{1/2}$$.
The result above handles a Type-II bilinear sum, that is to say, with unrestricted coefficients. The second main result handles a Type-I sum, in which we suppose that $$\beta_n=1$$ for all $$n\in\mathcal{N}$$. Then, if we replace the conditions on $$M$$ and $$N$$ by $$M\le N^2$$ and $$MN<p^{3/2}$$, it is shown that $\Sigma\ll_{\varepsilon,k}p^{\varepsilon}||\alpha||_1^{1/2}||\alpha||_2^{1/2}M^{1/4}N\left(\frac{M^2N^5}{p^3}\right)^{-1/12}.\tag{$$\ast\ast$$}$ For comparison, there is a trivial bound $$||\alpha||_1^{1/2}||\alpha||_2^{1/2}M^{1/4}N$$. In the special case $$k=2$$, Blomer et. al. [to appear] give a slightly stronger estimate than (**), building on work of É. Fouvry and P. Michel [Ann. Sci. Éc. Norm. Supér. (4) 31, No. 1, 93–130 (1998; Zbl 0915.11045)]. The latter paper is also an important starting point for the present work.
One interesting application is to moments of twisted cuspidal $$L$$-functions. Suppose that $$f$$ and $$g$$ are Hecke eigenforms (holomorphic, or Maass forms), of level 1, with the same root number. Then one has an asymptotic formula, with a power saving, for $\sum_{\chi(\mathrm{mod}\; p)}L(f\otimes\chi,1/2)\overline{L(g\otimes\chi,1/2)}.$ The proof of the Type-II bound employs the “shift by $$ab$$” method used by Vinogradov, Burgess and Karatsuba. This requires square-root estimates for some complicated averages involving $$\mathrm{Kl}_k(a;p)$$, and the proofs of these need detailed knowledge of the ramification properties of the associated sheaves.

### MSC:

 11L07 Estimates on exponential sums 11T23 Exponential sums 11L05 Gauss and Kloosterman sums; generalizations 11L26 Sums over arbitrary intervals 11M41 Other Dirichlet series and zeta functions 11N37 Asymptotic results on arithmetic functions 11F66 Langlands $$L$$-functions; one variable Dirichlet series and functional equations 14D05 Structure of families (Picard-Lefschetz, monodromy, etc.) 14F20 Étale and other Grothendieck topologies and (co)homologies

Zbl 0915.11045
Full Text:

### References:

  Blomer, Valentin, Applications of the {K}uznetsov formula on {$$\text{GL}(3)$$}, Invent. Math.. Inventiones Mathematicae, 194, 673-729, (2013) · Zbl 1292.11064  Blomer, Valentin; Fouvry, {\'E}.; Kowalski, E.; Michel, Ph.; Mili{\'c}evi{\'c}, D., On moments of twisted {$$L$$}-functions, Amer. J. Math., 139, 707-768, (2017) · Zbl 1476.11081  Blomer, Valentin; Fouvry, {\'E}.; Kowalski, E.; Michel, Ph.; Mili{\'c}evi{\'c}, D.; Sawin, W., On the non-vanishing of twisted {$$L$$}-functions  Blomer, Valentin; Mili\'cevi\'c, Djordje, The second moment of twisted modular {$$L$$}-functions, Geom. Funct. Anal.. Geometric and Functional Analysis, 25, 453-516, (2015) · Zbl 1400.11097  Bump, Daniel; Friedberg, Solomon; Goldfeld, Dorian, Poincar\'e series and {K}loosterman sums for {$${\rm SL}(3,\textbf{Z})$$}, Acta Arith.. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 50, 31-89, (1988) · Zbl 0647.10020  Deligne, Pierre, Cohomologie \'Etale, Lecture Notes in Math., 569, iv+312pp pp., (1977) · Zbl 0345.00010  Deligne, Pierre, La conjecture de {W}eil. {II}, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 137-252, (1980) · Zbl 0456.14014  Deligne, Pierre; Katz, N., Groupes de Monodromie en G\'eom\'etrie Alg\'ebrique. {II}, Lecture Notes in Math., 340, x+438 pp., (1973)  Deshouillers, J.-M.; Iwaniec, H., Kloosterman sums and {F}ourier coefficients of cusp forms, Invent. Math.. Inventiones Mathematicae, 70, 219-288, (1982/83) · Zbl 0502.10021  Fouvry, \'Etienne; Ganguly, Satadal; Kowalski, Emmanuel; Michel, Philippe, Gaussian distribution for the divisor function and {H}ecke eigenvalues in arithmetic progressions, Comment. Math. Helv.. Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society, 89, 979-1014, (2014) · Zbl 1306.11079  Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, Algebraic trace functions over the primes, Duke Math. J.. Duke Mathematical Journal, 163, 1683-1736, (2014) · Zbl 1318.11103  Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, Algebraic twists of modular forms and {H}ecke orbits, Geom. Funct. Anal.. Geometric and Functional Analysis, 25, 580-657, (2015) · Zbl 1344.11036  Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, On the exponent of distribution of the ternary divisor function, Mathematika. Mathematika. A Journal of Pure and Applied Mathematics, 61, 121-144, (2015) · Zbl 1317.11080  Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, A study in sums of products, Philos. Trans. Roy. Soc. A. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 373, 20140309-26, (2015) · Zbl 1397.11128  Fouvry, \'Etienne; Michel, Philippe, Sur certaines sommes d’exponentielles sur les nombres premiers, Ann. Sci. \'Ecole Norm. Sup.. Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\“‘eme S\'”’erie, 31, 93-130, (1998) · Zbl 0915.11045  Friedlander, John B.; Iwaniec, Henryk, Incomplete {K}loosterman sums and a divisor problem, Ann. of Math.. Annals of Mathematics. Second Series, 121, 319-350, (1985) · Zbl 0572.10029  Fu, Lei, Calculation of {$$\ell$$}-adic local {F}ourier transformations, Manuscripta Math.. Manuscripta Mathematica, 133, 409-464, (2010) · Zbl 1206.14035  Fu, Lei, Etale Cohomology Theory, Nankai Tracts in Math., 13, x+611 pp., (2011) · Zbl 1228.14001  Fu, Lei, {$$\ell$$}-adic {GKZ} hypergeometric sheaves and exponential sums, Adv. Math.. Advances in Mathematics, 298, 51-88, (2016) · Zbl 1368.14032  Gao, Peng; Khan, Rizwanur; Ricotta, Guillaume, The second moment of {D}irichlet twists of {H}ecke {$$L$$}-functions, Acta Arith.. Acta Arithmetica, 140, 57-65, (2009) · Zbl 1242.11035  Grothendieck, A.; Raynaud, M., Rev\^etements \'Etales et Groupe Fondamental, Lecture Notes in Math., 224, xxii+447 pp., (1971) · Zbl 0234.14002  Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Math., 52, xvi+496 pp., (1977) · Zbl 0367.14001  Heath-Brown, D. R., The fourth power mean of {D}irichlet’s {$$L$$}-functions, Analysis. Analysis. International Journal of Analysis and its Application, 1, 25-32, (1981) · Zbl 0479.10027  Heath-Brown, D. R., The divisor function {$$d_3(n)$$} in arithmetic progressions, Acta Arith.. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 47, 29-56, (1986) · Zbl 0549.10034  Hoffstein, J.; Lee, M., Second Moments and simultaneous non-vanishing of {$$\text{GL}(2)$$} automorphic {$$L$$}-series  Iwaniec, Henryk; Kowalski, Emmanuel, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, xii+615 pp., (2004) · Zbl 1059.11001  Katz, Nicholas M., Sommes Sxponentielles, Ast\'erisque, 79, 209 pp., (1980)  Katz, Nicholas M., Gauss sums, {K}loosterman Sums, and Monodromy Groups, Ann. of Math. Stud., 116, x+246 pp., (1988) · Zbl 0675.14004  Katz, Nicholas M., Exponential Sums and Differential Equations, Ann. of Math. Stud., 124, xii+430 pp., (1990) · Zbl 0731.14008  Katz, Nicholas M., Rigid Local Systems, Ann. of Math. Stud., 139, viii+223 pp., (1996) · Zbl 0864.14013  Katz, Nicholas M., Sums of {B}etti numbers in arbitrary characteristic, Finite Fields Appl.. Finite Fields and their Applications, 7, 29-44, (2001) · Zbl 1068.14501  Katz, Nicholas M., Convolution and Equidistribution: Sato-Tate Theorems for Finite-Field Mellin Transforms, Ann. Math. Stud., 180, viii+203 pp., (2012) · Zbl 1261.11084  Katz, Nicholas M.; Laumon, G\'erard, Transformation de {F}ourier et majoration de sommes exponentielles, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 361-418, (1985) · Zbl 0603.14015  Kowalski, Emmanuel, An Introduction to the Representation Theory of Groups, Grad. Stud. in Math., 155, vi+432 pp., (2014) · Zbl 1320.20008  Kowalski, Emmanuel; Michel, P.; VanderKam, J., Rankin-{S}elberg {$$L$$}-functions in the level aspect, Duke Math. J.. Duke Mathematical Journal, 114, 123-191, (2002) · Zbl 1035.11018  Laumon, G., The {E}uler-{P}oincar\'e Characteristic ({F}rench). Semi-continuit\'e du conducteur de {S}wan (d’apr\“es {P}. {D}eligne), Ast\'”erisque, 83, 173-219, (1981) · Zbl 0504.14013  Laumon, G., Transformation de {F}ourier, constantes d’\'equations fonctionnelles et conjecture de {W}eil, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 131-210, (1987) · Zbl 0641.14009  Laumon, G\'erard, Transformation de {F}ourier homog\“ene, Bull. Soc. Math. France. Bulletin de la Soci\'”et\'e Math\'ematique de France, 131, 527-551, (2003) · Zbl 1088.11044  Luo, W.; Rudnick, Z.; Sarnak, P., On {S}elberg’s eigenvalue conjecture, Geom. Funct. Anal.. Geometric and Functional Analysis, 5, 387-401, (1995) · Zbl 0844.11038  Milne, James S., \'Etale Cohomology, Princeton Math. Ser., 33, xiii+323 pp., (1980) · Zbl 0433.14012  Munshi, Ritabrata, The Legacy of {S}rinivasa {R}amanujan. Shifted convolution of divisor function {$$d_3$$} and {R}amanujan {$$\tau$$} function, Ramanujan Math. Soc. Lect. Notes Ser., 20, 251-260, (2013) · Zbl 1370.11059  Munshi, Ritabrata, Shifted convolution sums for {$$\text{GL}(3)\times\text{GL}(2)$$}, Duke Math. J.. Duke Mathematical Journal, 162, 2345-2362, (2013) · Zbl 1330.11033  Nunes, R. M., Squarefree integers in large arithmetic progressions · Zbl 1394.11009  Orgogozo, Fabrice, Alt\'erations et groupe fondamental premier \“a {$$p$$}, Bull. Soc. Math. France. Bulletin de la Soci\'”et\'e Math\'ematique de France, 131, 123-147, (2003) · Zbl 1083.14506  Soundararajan, K., Analytic Number Theory. The fourth moment of {D}irichlet {$$L$$}-functions, Clay Math. Proc., 7, 239-246, (2007) · Zbl 1208.11102  Topacogullari, Berke, The shifted convolution of divisor functions, Q. J. Math.. The Quarterly Journal of Mathematics, 67, 331-363, (2016) · Zbl 1356.11070  Young, Matthew P., The fourth moment of {D}irichlet {$$L$$}-functions, Ann. of Math.. Annals of Mathematics. Second Series, 173, 1-50, (2011) · Zbl 1296.11112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.