# zbMATH — the first resource for mathematics

On measures of uniformly distributed sequences and Benford’s law. (English) Zbl 0678.10036
The metric theory of uniform distribution of sequences is complemented by considering product measures with not necessarily identical factors. A necessary and sufficient condition is given under which a general product measure assigns the value one to the set of uniformly distributed sequences. For a stationary random product measure, almost all sequences are uniformly distributed with probability one. The discrepancy is estimated by $$N^{-1/2}\log^ 3N$$ for sufficiently large N. Thus the metric predominance of uniformly distributed sequences is stated, and a further explanation for Benford’s law is provided. The results can also be interpreted as estimates of the empirical distribution function for non-identical distributed samples.
Reviewer: P.Schatte
##### MSC:
 11K06 General theory of distribution modulo $$1$$ 60F15 Strong limit theorems 62G30 Order statistics; empirical distribution functions
Full Text:
##### References:
 [1] Benford, F.: The law of anomalous numbers. Proc. Amer. Philos. Soc.78, 551-572 (1938). · JFM 64.0555.03 [2] Csörgö, M., Révész, P.: Strong Approximations in Probability and Statistics. New York: Academic Press. 1981. · Zbl 0539.60029 [3] Diaconis, P.: The distribution of leading digits and uniform distribution mod 1. Ann. Probab.5, 72-81 (1977). · Zbl 0364.10025 [4] Fainleib, A. S.: A generalization of Essen’s inequality and an application of it to probabilistic number theory. Izv. AN SSSR, seriya matem.32, 859-879 (1968) (Russian). [5] Gál, I.S., Koksma, J.F.: Sur l’ordre de grandeur des fonctions sommables. Indag. Math.12, 192-207 (1950). · Zbl 0041.02406 [6] Halmos, P.R.: Measure Theory. New York: Van Nostrand 1958. · Zbl 0080.00415 [7] Hlawka, E.: Folgen auf kompakten Räumen. Abh. Math. Sem. Hamburg20, 223-241 (1956). · Zbl 0072.05701 [8] Hlawka, E.: Theorie und Gleichverteilung. Mannheim-Wien-Zürich: Bibl. Inst. 1979. [9] Kallenberg, O.: Random Measures New York: Academic Press (1983). [10] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: J. Wiley & Sons. 1974. · Zbl 0281.10001 [11] Nagasaka, K.: On Benford’s law. Ann. Inst. Statist. Math.36, Part A, 337-352 (1984). · Zbl 0555.62016 [12] Niederreiter, H., Philipp, W.: Berry-Esseen bounds and a theorem of Erdös and Turan on uniform distribution mod 1. Duke Math. J.40, 633-649 (1973). · Zbl 0273.10043 [13] Niederreiter, H., Tichy, R. F.: Beiträge zur Diskrepanz bezüglich gewichteter Mittel. Manuscripta Math.42, 85-99 (1983). · Zbl 0498.10030 [14] Raimi, R. A.: The first digit problem. Amer. Math. Monthly83, 521-538 (1976). · Zbl 0349.60014 [15] Schatte, P.: Zur Verteilung der Mantisse in der Gleitkommadarstellung einer Zuffalsgröße. Zeitschr. Angew. Math. Mech.53, 553-565 (1973). · Zbl 0267.60025 [16] Schatte, P.: On sums modulo 2 ? of independent random variables. Math. Nachr.110, 243-262 (1983). · Zbl 0523.60016 [17] Schatte, P.: On a law of the iterated logarithm for sums mod 1 with application to Benford’s law. Prob. Th. Rel. Fields77, 167-178 (1988). · Zbl 0619.60032 [18] Schatte, P.: On mantissa distributions in computing and Benford’s law. J. Inf. Process. Cybern. EIK24, 443-455 (1988). · Zbl 0662.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.