The weak type \(L^ 1\) convergence of eigenfunction expansions for pseudodifferential operators. (English) Zbl 0678.35096

Let \({\mathcal M}\) be a smooth connected compact manifold without boundary of dimension \(n\geq 2\) and let \({\mathcal P}({\mathcal D})\) be a first-order elliptic pseudodifferential operator on \({\mathcal M}\) which is selfadjoint with respect to a smooth positive density. Then \({\mathcal L}^ 2({\mathcal M})\) admits a complete orthogonal direct sum decomposition with respect to the eigenspaces of \({\mathcal P}({\mathcal D})\) and for \(f\in {\mathcal L}^ 2({\mathcal M})\) it holds that \(f=\sum^{\infty}_{j=0}e_ j(f)\) with convergence in the \({\mathcal L}^ 2\)-topology, where \(e_ j\) denotes the projection on the j-th eigenspace.
This is no longer true in \({\mathcal L}^ p({\mathcal M})\), \(p\neq 2.\)
However, for certain “averages” of the partial sums, for example for the Riesz means of index \(\delta >0\) defined by \[ {\mathcal S}_ t^{\delta}f:=\sum_{\lambda_ j\leq t}(1-\lambda_ j/t)^{\delta}e_ j(f)\quad (\lambda_ j\quad are\quad the\quad eigenvalues\quad of\quad {\mathcal P}({\mathcal D})) \] this remains true. This was shown by the second author [Ann. Math., II. Ser. 126, 439-447 (1987; Zbl 0653.35068)].
The main result of the paper under review is the following. Let \({\mathcal L}^{1,\infty}({\mathcal M})\) denote weak \({\mathcal L}^ 1({\mathcal M})\) and let \(\delta =(n-1)/2\). Then there exists a constant \({\mathcal C}\) independent of t, such that \(\| S_ t^{\delta}f\|_{{\mathcal L}^{1,\infty}({\mathcal M})}\leq {\mathcal C}\| f\|_{{\mathcal L}^ 1({\mathcal M})},\) e.g. a uniform weak \({\mathcal L}^ 1\)-type estimate holds.
Reviewer: J.Marschall


35S05 Pseudodifferential operators as generalizations of partial differential operators
47Gxx Integral, integro-differential, and pseudodifferential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds


Zbl 0653.35068
Full Text: DOI EuDML


[1] Avakumovi?, V.G.: Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z.65, 327-344 (1956) · Zbl 0070.32601
[2] Berard, P.H.: Riesz means on Riemannian manifolds. Proc. Symp. Pure Math.XXXVI, 1-12 (1980)
[3] Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math.44, 287-299 (1972) · Zbl 0215.18303
[4] Chanillo, S., Muckenhoupt, B.: Weak type estimates for Bochner-Riesz spherical summation multipliers. Trans. Am. Math. Soc.294, 693-703 (1986) · Zbl 0587.42009
[5] Christ, F.M.: Weak type (1, 1) bounds for rough operators. Ann. Math.128, 19-42 (1988) · Zbl 0666.47027
[6] Christ, F.M.: Weak type endpoint bounds for Bochner-Riesz multipliers. Rev. Mat. Ibero-Am. (to appear) · Zbl 0726.42009
[7] Christ, F.M., Rubio de Francia, J.L.: Weak type (1, 1) bounds for rough operators. II. Invent. Math.93, 225-237 (1988) · Zbl 0695.47052
[8] Córdoba, A.: A note on Bochner-Riesz operators. Duke Math. J.46, 505-511 (1979) · Zbl 0438.42013
[9] Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math.124, 9-36 (1970) · Zbl 0188.42601
[10] Fefferman, C.: The multiplier problem for the ball. Ann. Math.94, 330-336 (1971) · Zbl 0234.42009
[11] Fefferman, C.: A note on spherical summation multipliers. Isr. J. Math.15, 44-52 (1973) · Zbl 0262.42007
[12] Gelfand, I.M., Shilov, G.E.: Generalized functions, Vol. I. New York: Academic Press 1964
[13] Hörmander, L.: On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators. In: Some recent advances in the basic sciences, pp. 155-202. Yeshiva Univ., New York, 1966
[14] Hörmander, L.: The spectral function of an elliptic operator. Acta Math.88, 341-370 (1968) · Zbl 0164.40701
[15] Kenig, C., Stanton, R., Tomas, P.: Divergence of eigenfunction expansions. J. Funct. Anal.46, 28-44 (1982) · Zbl 0506.47014
[16] Levitan, B.M.: On the asymptotic behavior of the spectral function of a self-adjont differential equation of the second order. Izv. Akad. Nauk SSSR, Ser. Mat.16, 325-352 (1952)
[17] Mitjagin, B.S.: Divergenz von Spektralentwicklungen inL p-Räumen. Boston: Birkhäuser 1974
[18] Seeley, R.: Complex powers of an elliptic operator. Proc. Symp. Pure Math.X, 288-307 (1968)
[19] Sogge, C.D.: Oscillatory integrals and spherical harmonics. Duke Math. J.53, 43-65 (1986) · Zbl 0636.42018
[20] Sogge, C.D.: Concerning theL p norm of spectral clusters for second order elliptic operators on compact manifolds. J. Funct. Anal.77, 123-134 (1988) · Zbl 0641.46011
[21] Sogge, C.D.: On the convergence of Riesz means on compact manifolds. Ann. Math.126, 439-447 (1987) · Zbl 0653.35068
[22] Sogge, C.D., Stein, E.M.: Averages of functions over hypersurfaces inR n . Invent. Math.82, 543-556 (1985) · Zbl 0626.42009
[23] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, N.J.: Princeton Univ. Press 1971
[24] Stein, E.M.: Oscillatory integrals in Fourier analysis. Beijing Lectures in Harmonic Analysis, pp. 307-356. Princeton Univ. Press 1986
[25] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press 1971 · Zbl 0232.42007
[26] Taylor, M.: Pseudodifferential operators. Princeton Univ. Press 1981 · Zbl 0453.47026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.