Alvino, Angelo; Trombetti, Guido; Lions, Pierre-Louis On optimization problems with prescribed rearrangements. (English) Zbl 0678.49003 Nonlinear Anal., Theory Methods Appl. 13, No. 2, 185-220 (1989). The goal of the paper is to review some results concerning functions with prescribed rearrangement and related optimization problems. The first part is devoted to the study of the set of weak limits for sequences of equimeasurable nonnegative functions in \(L^ p(\Omega)\) with \(\Omega \subseteq R^ n\). Let \(C(f_ 0)=\{f\geq 0:\) \(f^*=f^*_ 0\}\) where \(f_ 0\in L^ p(\Omega)\) and \(f^*,f^*_ 0\) are the rearrangements of \(f,f_ 0\). If \(K(f_ 0)\) consists of all weak limits of sequences in \(C(f_ 0)\) and \[ f\prec g\quad \Leftrightarrow \quad \int^{t}_{0}f^*(s)ds\leq \int^{t}_{0}g^*(s)ds,\quad \int^{| \Omega |}_{0}f^*(s)ds=\int^{| \Omega |}_{0}g^*(s)ds \] then (i) \(K(f_ 0)=\{f\geq 0:\) \(f\prec f_ 0\}\) and (ii) \(K(f_ 0)\) is a closed weakly compact, convex set in \(L^ p(\Omega)\) and \(C(f_ 0)\) is the set of extreme points of \(K(f_ 0).\) The results (i) and (ii) are partially known and cited with references. In the remainder of the paper the above geometric description is applied to optimization results in \(C(f_ 0)\). For example the authors consider the following problem \[ \max \{\int_{\Omega}| u|^ qdx:\quad u\in W_ 0^{1,p}(\Omega),\quad | \nabla u| \leq f\quad with\quad f^*\quad fixed\}, \] where \(1\leq q\leq np/(n-p)\) if \(p<n\), \(1\leq q<+\infty\) if \(p\geq n\). They prove that the maximum is achieved for a ball and u,f spherically symmetric. Reviewer: A.Alvino Cited in 3 ReviewsCited in 112 Documents MSC: 49J20 Existence theories for optimal control problems involving partial differential equations 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:rearrangement; equimeasurable nonnegative functions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Alvino, A., Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. mat. ital., 14, 148-156 (1977) · Zbl 0352.46020 [2] Alvino, A., Un caso limite della diseguaglianza di Sobolev in spazi di Lorentz, Rend. Acad. Sci. Napoli, XLIV, 105-112 (1977) · Zbl 0412.46024 [3] Alvino, A.; Trombetti, G., Sulle migliori constanti di maggiorazioni per una classe di equazioni ellitiche degeneri, Ric. Mat., 27, 414-428 (1978) · Zbl 0403.35027 [4] Alvino, A.; Trombetti, G., A lower bound for the first eigenvalue of an elliptic operator, J. math Analysis Applic., 94, 328-337 (1983) · Zbl 0525.35063 [5] Alvino, A.; Trombetti, G., Isoperimetric inequalities connected with torsion problem and capacity, Boll. Un. mat. ital., 4-B, 773-785 (1985) [7] Alvino, A.; Lions, P. L.; Trombetti, G., A remark on comparison results via symmetrization, Proc. R. Soc. Edinb., 102A, 37-48 (1986) · Zbl 0597.35005 [9] Bandle, C., Isoperimetric Inequalities and Applications, (Monographs and Studies in Mathematics (1980), Pitman: Pitman London) · Zbl 0436.35063 [11] Brézis, H.; Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities, Communs partial diff. Eqns, 5, 773-789 (1980) · Zbl 0437.35071 [12] Brown, J. R., Approximation theorems for Markov operators, Pacif. J. Math., 16, 13-23 (1966) · Zbl 0139.34702 [13] Buonocore, P., Sur la rigidité à la torsion des domaines doublement connexes, C.r. hebd. Séanc. Acad. Sci. Paris, 241-244 (1984) · Zbl 0576.35004 [14] Buonocore, P., Isoperimetric inequalities in the torsion problem for multiply connected domains, Z. angew. Math. Phys., 35, 1-14 (1985) · Zbl 0559.73010 [15] Chong, K. M.; Rice, N. M., Equimeasurable rearrangements of functions, (Queen’s papers in pure and applied mathematics (1971), Queen’s University: Queen’s University Ontario), No. 28 · Zbl 0275.46024 [16] Crandall, M. G.; Rabinowitz, P. H., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Archs Ration. Mech. Analysis, 58, 207-218 (1975) · Zbl 0309.35057 [17] Giarusso, E.; Nunziante, D., Symmetrization in a class of first-order Hamilton-Jacobi equations, Nonlinear Analysis, 8, 289-299 (1984) · Zbl 0543.35014 [18] Giarusso, E.; Nunziante, D., Comparison theorems for a class of first-order Hamilton-Jacobi equations, Annls Toulouse, 7, 57-75 (1985) · Zbl 0554.35007 [19] Giarusso, E.; Nunziante, D., Su un problema di autovalori per una classe de equazioni ellitiche degenari, Le Matematiche, XXXVI, 294-304 (1981) [20] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities (1964), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0634.26008 [21] Hardy, G. H.; Littlewood, J. E.; Polya, G., Mess. Math., 58, 145-152 (1929) · JFM 55.0740.04 [22] Hedberg, J., On certain convolution inequalities, Proc. Am. math. Soc., 36, 505-519 (1972) · Zbl 0283.26003 [23] Kohn, R.; Strang, G., Explicit relaxation of a variational problem in optimal design, Bull. Am. math. Soc., 9, 211-214 (1983) · Zbl 0527.49002 [24] Laetsch, T., A uniqueness theorem for elliptic Q.V.I., J. funct. Analysis, 18, 286-287 (1975) · Zbl 0327.49003 [25] Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations (1982), Pitman: Pitman London · Zbl 1194.35459 [26] Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case, Part II, Riv. Mat. Iberoamericana, 1, 45-121 (1985) · Zbl 0704.49006 [27] Lions, P. L., Résolution de problèmes elliptiques quasilinéaires, Archs ration. Mech. Analysis, 74, 335-353 (1980) · Zbl 0449.35036 [29] MacLeod, J. B., Rearrangements and extreme values of Dirichlet norms, (M.R.C. Summary Report (1985), University of Wisconsin-Madison) [30] Migliaccio, L., Sur une condition de Hardy, Littlewood, Polya, C.r. hebd. Séanc. Acad. Sci. Paris, 297, 25-28 (1983) · Zbl 0553.46022 [31] Mignot, F.; Puel, J. P., Sur une classe de problèmes nonlinéaires avec une nonlinárité positive, croissante, convexe, Communs partial diff. Eqns, 5, 386-791 (1980) · Zbl 0456.35034 [32] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20, 1077-1092 (1971) · Zbl 0213.13001 [33] Mossino, J., Inégalités Isopérimétriques et Applications en Physique (1985), Hermann: Hermann Paris · Zbl 0537.35002 [34] Mossino, J.; Teman, R., Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke math. J., 48, 475-495 (1981) · Zbl 0476.35031 [35] Murat, F.; Tartar, L., Calcul des variations et homogénéisation, (Les Méthodes de l’Homogénéisation: Théorie et Applications en Physique (1985), Eyrolles: Eyrolles Paris), Collection Dir. Et. Rech. E.D.F. [36] O’Neil, R., Convolution operators and L(p, q) spaces, Duke. math. J., 80, 129-142 (1980) · Zbl 0178.47701 [37] Rakotoson, J. M., Résultats de régularité et d’existence pour certaines équations elliptiques quasilinéaires, C.r. hebd. Séanc. Acad Sci. Paris (1986) [38] Rakotoson, J. M., Réarrangement relatif dans les équations elliptiques quasi-linéaires avec un second membre de distribution: application à un théoreme d’exitence et d’unicité (1986), Preprint [39] Royden, H. L., Real Analysis (1963), MacMillan: MacMillan New York · Zbl 0121.05501 [40] Ryff, J. V., Majorized functions and measures, Proc. Acad. Sci. Amsterdam, 71, 431-437 (1968) · Zbl 0164.15903 [41] Ryff, J. V., Extreme points of some convex subsets of \(L^1(0, 1)\), Proc. Am. math. Soc., 18, 1026-1034 (1967) · Zbl 0184.34503 [43] Strichartz, R. S., A note on Trudinger’s extension of Sobolev’s inequality, Indiana Univ. math. J., 21, 841-842 (1972) · Zbl 0241.46028 [45] Talenti, G., Elliptic equations with rearrangements, Annali Scu. norm. sup. Pisa, 141-162 (1978), Volumes in Honor of Jean Leray [46] Trudinger, N. S., On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402 [47] Tahraoui, R., Quelques remarques sur le contrôle des valuers propres, C.r. hebd. Séanc. Acad. Sci. Paris, 300, 101-104 (1985), Preprint, Announced in · Zbl 0573.49005 [49] Trudinger, N., On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17, 473-483 (1967) · Zbl 0163.36402 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.