×

Cohomology of power sets with applications in quantum probability. (English) Zbl 0678.60041

Summary: Square integrable Wiener functionals may be represented as sums of multiple Itô integrals. This leads to an identification of such functionals with square integrable functions on the symmetric measure space of the Lebesgue space \(R_+\). When the pointwise product of Wiener functionals is thus carried over, the product takes a pleasing form (cf. Wick’s theorem) and various non-commutative perturbations of this “Wiener product” have been considered.
Here we employ cohomological arguments to analyse deformations of an abstract Wiener product. This leads to the construction of Lévy fields which are neither bosonic nor fermionic, and also gives rise to homotopies between quasi-free boson and fermion fields. Finally we unify existence and uniqueness results for quantum stochastic differential equations by treating mixed noise differential equations.

MSC:

60H05 Stochastic integrals
81P20 Stochastic mechanics (including stochastic electrodynamics)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Acardi, L., Parthasarathy, K. R.: A martingale characterisation of canonical commutation and anti-commutation relations. J. Funct. Anal.77, 211-231 (1988) · Zbl 0642.60032
[2] Applebaum, D. B., Hudson, R. L.: Fermion Itô’s formula and stochastic evolutions. Commun. Math. Phys.96, 473-496 (1984) · Zbl 0572.60052
[3] Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math.59, 1-46 (1954) · Zbl 0055.10304
[4] Bargmann, V., Wigner, E. P.: Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA34, 211-223 (1948) · Zbl 0030.42306
[5] Guichardet, A.: Symmetric Hilbert spaces and related topics. Lecture Notes in Mathematics vol. 261 Berlin, Heidelberg, New York: Springer 1972 · Zbl 0265.43008
[6] Hudson, R. L., Lindsay, J. M., Parthasarathy, K. R.: Stochastic integral representation of some quantum martingales in Fock space. In: From local times to global geometry, control and physics. Elworthy, K. D. (ed.) Research Notes in Mathematics vol.150, pp. 121-131. London: Pitman 1986 · Zbl 0616.46073
[7] Hudson, R. L., Parthasarathy, K. R.: Quantum Itô’s formula and stochastic evolutions. Commun. Maths. Phys.93, 301-323 (1984) · Zbl 0546.60058
[8] Hudson, R. L., Parthasarathy, K. R.: Unification of fermion and boson stochastic calculus, Commun. Math. Phys.104, 457-470 (1986) · Zbl 0604.60063
[9] Lindsay, J. M., Maassen, H.: The stochastic calculus of bose noise, Preprint, 1988 · Zbl 0652.60068
[10] Lindsay, J. M., Maassen, H.: An integral kernel approach to noise. In: Quantum probability and applications III (Proceedings, Oberwolfach 1987). Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics, pp. 192-208. Berlin, Heidelberg, New York: Springer 1988
[11] Lindsay, J. M.: Parthasarathy, K. R.: Rigidity of the Poisson convolution. In: 2nd Heidelberg workshop on quantum probability. Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer to appear, 13pp.
[12] Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum probability and applications II. Accardi, L., von Waldenfels, W. (eds.) Lecture Notes in Mathematics vol.1136, pp. 361-374. Berlin, Heidelberg, New York: Springer 1985
[13] Mackey: G. W., Unitary representations of group extensions. I, Acta. Math.99, 265-311 (1958) · Zbl 0082.11301
[14] Meyer, P. A.: Eléments de probabilités quantiques I?V: Sém Prob. XX. Lecture Notes in Mathematics, vol.1204, pp. 186-312. VI?VIII Sém Prob XXI. Lecture Notes in Mathematics, vol.1247, pp. 34-80. Berlin, Heidelberg, New York: Springer 1986, 1987
[15] Meyer, P. A.: Fock space and probability theory. Bielefeld Preprint, 1985
[16] Parthasarathy, K. R.: A unified approach to classical, bosonic and fermionic brownian motion. In: Proc. Lévy Centenary Col., 1987 (Astérisque, Soc. Math. de France)
[17] Varadarajan, V. S.: Geometry of quantum theory. New York: van Nostrand, 1968, 1970 · Zbl 0155.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.