zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A linear programming oriented procedure for quadratic stabilization of uncertain systems. (English) Zbl 0678.93042
Summary: This paper gives a new necessary and sufficient condition for linear quadratic stabilization of linear uncertain systems when both the dynamic as well as the control matrix are subject to uncertainty. A constructive numerical procedure is defined to check the condition and it furthermore provides a stabilizing linear feedback gain. Some experiments are presented.

93D15Stabilization of systems by feedback
93B35Sensitivity (robustness) of control systems
90C05Linear programming
65K05Mathematical programming (numerical methods)
93C05Linear control systems
Full Text: DOI
[1] Barmish, B. R.: Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. optim. Theory appl. 46, No. 4, 399-408 (1985) · Zbl 0549.93045
[2] Horisberger, H. P.; Belanger, P. R.: Regulators for linear time invariant plants with uncertain parameters. IEEE trans. Automat. control 21, No. 5, 705-708 (1976) · Zbl 0339.93013
[3] Khargonekar, P. P.; Rotea, M. A.: Stabilization of uncertain systems with norm bounded uncertainty using control Lyapunov functions. Proceedings of the 27th conference on decision and control, A 503-A 507 (1976)
[4] Leitman, G.: Guaranteed ultimate boundedness for a case of uncertain linear dynamic systems. IEEE trans. Automat. control 21, No. 6, 1109-1110 (1978) · Zbl 0388.93060
[5] Peres, P. L. D.; Bernussou, J.; Geromel, J. C.: Stabilisation de systèmes linéaires incertains par approche de programmation linéaire. Internal report LAAS du CNRS, no. 88205 (July 1988)
[6] Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems. System control lett. 8, No. 4, 351-357 (1987) · Zbl 0618.93056
[7] Petersen, I. R.; Hollot, C. V.: A Riccati equation approach to the stabilization of uncertain linear systems. Automatica 22, No. 4, 397-411 (1986) · Zbl 0602.93055
[8] Stalford, H. L.: Robust control of uncertain systems in the absence of matching conditions: scalar input. Proceedings of the 26th conference on decision and control, 1298-1307 (1986)
[9] Thorp, J. S.; Barmish, B. R.: On guaranteed stability of uncertain linear systems via linear control. J. optim. Theory appl. 35, No. 4, 559-579 (1981) · Zbl 0446.93040
[10] Zhou, K.; Khargonekar, P. P.: Robust stabilization of linear systems with norm-bounded time-varying uncertainty. Systems control lett. 10, No. 1, 17-20 (1988) · Zbl 0634.93066