×

Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study. (English) Zbl 1377.92037

Summary: In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a ‘non-informative’ and ‘informative’ experiment, which are heuristically designed.
The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V., The IWA anaerobic digestion model no 1 (ADM1), Water Sci. Technol., 45, 10, 65-73, (2002)
[2] Batstone, D. J.; Keller, J.; Angelidaki, I., Anaerobic digestion model no. 1, (2002), IWA Publishing
[3] Blumensaat, F.; Keller, J., Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no. 1 (ADM1), Water Res., 39, 1, 171-183, (2005)
[4] Weinrich, S.; Nelles, M., Critical comparison of different model structures for the applied simulation of the anaerobic digestion of agricultural energy crops, Bioresour. Technol., 178, 306-312, (2015)
[5] Kythreotou, N.; Florides, G.; Tassou, S. A., A review of simple to scientific models for anaerobic digestion, Renew. Energy, 71, 701-714, (2014)
[6] Mendes, C.; Esquerre, K.; Queiroz, L. M., Application of anaerobic digestion model no. 1 for simulating anaerobic mesophilic sludge digestion, Waste Manage., 35, 89-95, (2015)
[7] Rosen, C.; Jeppsson, U., Aspects on ADM1 implementation within the BSM2 framework, (2006)
[8] Koch, K.; Lübken, M.; Gehring, T.; Wichern, M.; Horn, H., Biogas from grass silage-measurements and modeling with ADM1, Bioresour. Technol., 101, 21, 8158-8165, (2010)
[9] Mairet, F.; Bernard, O.; Ras, M.; Lardon, L.; Steyer, J.-P., Modeling anaerobic digestion of microalgae using ADM1, Bioresour. Technol., 102, 13, 6823-6829, (2011)
[10] Ntaikou, I.; Gavala, H. N.; Lyberatos, G., Application of a modified anaerobic digestion model 1 version for fermentative hydrogen production from sweet sorghum extract by ruminococcus albus, Int. J. Hydrogen Energy, 35, 8, 3423-3432, (2010)
[11] Razaviarani, V.; Buchanan, I. D., Calibration of the anaerobic digestion model no. 1 (ADM1) for steady-state anaerobic co-digestion of municipal wastewater sludge with restaurant grease trap waste, Chem. Eng. J., 266, 91-99, (2015)
[12] Kleerebezem, R.; Van Loosdrecht, M., Waste characterization for implementation in ADM1, Biotechnol. Bioeng., 54, 4, 167-174, (2006)
[13] Zaher, U.; Buffiere, P.; Steyer, J.-P.; Chen, S., A procedure to estimate proximate analysis of mixed organic wastes, Water Environ. Res., 81, 407-415, (2009)
[14] Junicke, H.; Abbas, B.; Oentoro, J.; van Loosdrecht, M.; Kleerebezem, M., Absolute quantification of individual biomass concentrations in a methanogenic cocultre, AMB Express, 35, 4, 1-8, (2014)
[15] Walter, E.; Pronzato, L., Identification of parametric models from experimental data, (1997), Springer Verlag Heidelberg
[16] Godfrey, K.; DiStefano, J., Identifiability of model parameters, (Walter, E., Identifiability of Parametric Models, (1987), Pergamon Press Oxford), 1-20 · Zbl 0648.93009
[17] Pohjanpalo, H., System identifiability based on the power series expansion of the output, Math. Biosci., 41, 1, 21-33, (1978) · Zbl 0393.92008
[18] Saccomani, M.; Audoly, S.; D’Angio, L., Parameter identiability of nonlinear systems: the role of initial conditions, Automatica, 39, 4, 619-632, (2003) · Zbl 1034.93014
[19] Chiş, O.; Banga, J. R.; Balsa-Canto, E., Genssi: a software toolbox for structural identifiability analysis of biological models, Bioinformatics, 27, 18, 2610-2611, (2011)
[20] Sedoglavic, A., A probalistic algorithm to test local algebraic observability in polynomial time, J. Symb. Comput., 33, 735-755, (2002) · Zbl 1055.93011
[21] Karlsson, J.; Anguelova, M.; Jirstrand, M., An efficient method for structural identifiability analysis of large dynamic systems, Procs of the 16th IFAC Symposium on System Identification, 941-946, (2012), Brussels (Belgium)
[22] Anguelova, M., Observability and Identifiabiltiy of Nonlinear Systems with Applications in Biology, Ph.D. thesis, (2007), Dept. Mathematical Science, Chalmers University of Technology and Göteborg University, Göteborg
[23] Diop, S.; Wang, Y., Equivalence between algebraic observability and local generic observability, Proceedings of the 32nd Conference on Decision and Control, vol. 3, 2864-2865, (1993)
[24] Hermann, R.; Krener, A. J., Nonlinear controllability and observability, IEEE Trans. Automatic Control, 22, 5, 728-740, (1977) · Zbl 0396.93015
[25] Sontag, E., A concept of local observability, Syst. Control Lett., 5, 1, 41-47, (1984) · Zbl 0567.93010
[26] Raue, A.; Karlsson, J.; Saccomani, M.; Jirstrand, M.; J., T., Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatics, 30, 10, 1140-1148, (2014)
[27] Bellu, G.; Saccomani, M. P.; Audoly, S.; D’Angiò, L., DAISY: a new software tool to test global identifiability of biological and physiological systems, Comput. Methods Programs Biomed., 88, 1, 52-61, (2007)
[28] Knightes, C. D.; Peters, C. A., Statistical analysis of nonlinear parameter estimation for monod biodegradation kinetics using bivariate data, Biotechnol. Bioeng., 69, 2, 160-170, (2000)
[29] Ellis, T. G.; Barbeau, D. S.; Smets, B. F.; Grady Jr, C. L., Respirometric technique for determination of extant kinetic parameters describing biodegradation, Water Environ. Res., 68, 5, 917-926, (1996)
[30] Holmberg, A., On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities, Math. Biosci., 62, 1, 23-43, (1982) · Zbl 0489.92021
[31] Bhonsale, S. S.; Telen, D.; Vercammen, D.; Vallerio, M.; Hufkens, J.; Nimmegeers, P.; Logist, F.; Van Impe, J., Pomodoro - an open source toolkit for multiobject optimal control, and model based control and estimation, Preprint submitted to Expert Syst. Appl., (2016)
[32] Bhonsale, S.; Vallerio, M.; Telen, D.; Vercammen, D.; Logist, F.; Van Impe, J., Solace: an open source package for nolinear model predictive control and state estimation for (bio)chemical processes, Proceedings of the 26th European Symposium on Computer Aided Process Engineering. Portoroz, Slovenia., June 12th - 15th, (2016)
[33] Biegler, L. T., Nonlinear programming: concepts, algorithms, and applications to chemical processes, (2010), Society for Industrial and Applied Mathematics (Philadelphia, USA) · Zbl 1207.90004
[34] Alves, L. A.; Almeida e Silva, J. B.; Giulietti, M., Solubility of d-glucose in water and ethanol/water mixtures, J. Chem. Eng. Data, 52, 6, 2166-2170, (2007)
[35] Strik, D.; Domnanovich, A.; Holubar, P., A ph-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage, Process Biochem., 41, 6, 1235-1238, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.