×

zbMATH — the first resource for mathematics

Optimal constrained interpolation in mesh-adaptive finite element modeling. (English) Zbl 1448.65168
MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
46B70 Interpolation between normed linear spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Adcroft and D. Marshall, How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus A, 50 (1998), pp. 95–108.
[2] M. S. Aln\aes, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P. Langtangen, Unified framework for finite element assembly, Int. J. Comput. Sci. Engrg., 4 (2009), pp. 231–244.
[3] M. S. Aln\aes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40 (2014), 9. · Zbl 1308.65175
[4] Applied Modelling and Computation Group (AMCG), Fluidity Manual, version 4.1.12, Department of Earth Science and Engineering, Imperial College London, London, UK, 2015.
[5] A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, J. Comput. Phys., 1 (1966), pp. 119–143. · Zbl 0147.44202
[6] D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: From Hodge theory to numerical stability, Bull. Amer. Math. Soc., 47 (2010), pp. 281–354. · Zbl 1207.65134
[7] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179–192.
[8] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11, Revision 3.6, Argonne National Laboratory, Lemont, IL, 2015.
[9] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc Web Page, . (Accessed 04-25-17.)
[10] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in object-oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Boston, Inc., Boston, 1997, pp. 163–202. · Zbl 0882.65154
[11] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), pp. 267–279. · Zbl 0871.76040
[12] T. B. Benjamin, Gravity currents and related phenomena, J. Fluid Mech., 31 (1968), pp. 209–248. · Zbl 0169.28503
[13] P.-E. Bernard, N. Chevaugeon, V. Legat, E. Deleersnijder, and J.-F. Remacle, High-order h-adaptive discontinuous Galerkin methods for ocean modelling, Ocean Dynamics, 57 (2007), pp. 109–121.
[14] S. Blaise and A. St-Cyr, A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation, Monthly Weather Rev., 140 (2012), pp. 978–996.
[15] P. Bochev and M. Shashkov, Constrained interpolation (remap) of divergence-free fields, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 511–530. · Zbl 1143.65389
[16] H. Borouchaki, F. Hecht, and P. J. Frey, Mesh gradation control, Int. J. Numer. Methods Engrg., 43 (1998), pp. 1143–1165, , · Zbl 0944.76071
[17] F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces: Applications to Non-convex Variational Models, Springer, New York, 2014. · Zbl 1302.46001
[18] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, 8 (1974), pp. 129–151. · Zbl 0338.90047
[19] A. G. Buchan, P. E. Farrell, G. J. Gorman, A. J. H. Goddard, M. D. Eaton, E. T. Nygaard, P. L. Angelo, R. P. Smedley-Stevenson, S. R. Merton, and P. N. Smith, The immersed body supermeshing method for modelling reactor-physics problems with complex internal structures, Ann. Nuclear Energy, 63 (2014), pp. 399–408.
[20] G. F. Carey, G. Bicken, V. Carey, C. Berger, and J. Sanchez, Locally constrained projections on grids, Int. J. Numer. Methods Engrg., 50 (2001), pp. 549–577. · Zbl 1006.76051
[21] L. Chen, P. Sun, and J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in \({L}^p\)-norm, Math. Comp., 76 (2007), pp. 179–204, . · Zbl 1106.41013
[22] T. J. Chung, Finite Element Analysis in Fluid Dynamics, McGraw-Hill, New York, 1978. · Zbl 0432.76003
[23] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Appl. Math. 40, SIAM, Philadelphia, 2002, . · Zbl 0999.65129
[24] C. J. Cotter and D. A. Ham, Numerical wave propagation for the triangular \(P1_{DG}\)–\(P2\) finite element pair, J. Comput. Phys., 230 (2011), pp. 2806–2820. · Zbl 1316.76019
[25] C. J. Cotter, D. A. Ham, and C. C. Pain, A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Model., 26 (2009), pp. 86–90.
[26] C. J. Cotter, D. A. Ham, C. C. Pain, and S. Reich, LBB stability of a mixed Galerkin finite element pair for fluid flow simulations, J. Comput. Phys., 228 (2009), pp. 336–348. · Zbl 1409.76058
[27] C. J. Cotter and J. Shipton, Mixed finite elements for numerical weather prediction, J. Comput. Phys., 231 (2012), pp. 7076–7091. · Zbl 1284.86005
[28] C. J. Cotter and J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, J. Comput. Phys., 257 (2014), pp. 1506–1526. · Zbl 1351.76054
[29] S. Danilov, Ocean modeling on unstructured meshes, Ocean Model., 69 (2013), pp. 195–210.
[30] D. R. Davies, C. R. Wilson, and S. C. Kramer, Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics, Geochem. Geophys. Geosyst., 12 (2011), Q06001.
[31] D. H. Eberly, \(3\)D Game Engine Design: A Practical Approach to Real-Time Computer Graphics, 2nd ed., CRC Press, Boca Raton, FL, 2007.
[32] C. Eskilsson, An hp-adaptive discontinuous Galerkin method for shallow water flows, Int. J. Numer. Methods Fluids, 67 (2011), pp. 1605–1623. · Zbl 1381.76165
[33] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in Proceedings of Computational Science – ICCS 2002, P. M. A. Sloot et al., eds., Lecture Notes in Comput. Sci. 2331, Springer, Berlin, 2002, pp. 632–641. · Zbl 1056.65046
[34] P. E. Farrell, Galerkin Projection of Discrete Fields via Supermesh Construction, Ph.D. thesis, Imperial College London, 2009.
[35] P. E. Farrell, The addition of fields on different meshes, J. Comput. Phys., 230 (2011), pp. 3265–3269. · Zbl 1218.65024
[36] P. E. Farrell and J. R. Maddison, Conservative interpolation between volume meshes by local Galerkin projection, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 89–100. · Zbl 1225.76193
[37] P. E. Farrell, M. D. Piggott, C. C. Pain, G. J. Gorman, and C. R. Wilson, Conservative interpolation between unstructured meshes via supermesh construction, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 2632–2642. · Zbl 1228.76105
[38] G. J. Fix, Finite element models for ocean circulation problems, SIAM J. Appl. Math., 29 (1975), pp. 371–387, . · Zbl 0329.76092
[39] R. Ford, C. C. Pain, M. D. Piggott, A. J. H. Goddard, C. R. E. de Oliveira, and A. P. Umpleby, A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: Model formulation, Monthly Weather Rev., 132 (2004), pp. 2816–2831.
[40] M. J. Gander and C. Japhet, An algorithm for non-matching grid projections with linear complexity, in Domain Decomposition Methods in Science and Engineering XVIII, M. Bercovier et al., eds., Lecture Notes in Comput. Sci. Eng. 70, Springer, Berlin, 2009, pp. 185–192. · Zbl 1183.65161
[41] M. J. Gander and C. Japhet, Algorithm 932: PANG: Software for nonmatching grid projections in 2D and 3D with linear complexity, ACM Trans. Math. Software, 40 (2013), 6. · Zbl 1295.65120
[42] P. L. George and H. Borouchaki, Delaunay Triangulation and Meshing: Application to Finite Elements, Hermes, Paris, 1998. · Zbl 0908.65143
[43] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Engrg., 79 (2009), pp. 1309–1331. · Zbl 1176.74181
[44] G. J. Gorman, C. C. Pain, M. D. Piggott, A. P. Umpleby, P. E. Farrell, and J. R. Maddison, Interleaved parallel tetrahedral mesh optimisation and dynamic load-balancing, in Proceedings of the International Conference on Adaptive Modeling and Simulation (ADMOS 2009), Brussells, Belgium, P. Bouillard and P. Díez, eds., 2009, pp. 101–104.
[45] J. Grandy, Conservative remapping and region overlays by intersecting arbitrary polyhedra, J. Comput. Phys., 148 (1999), pp. 433–466. · Zbl 0932.76073
[46] P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method. Vol. 1: Advection-Diffusion, John Wiley & Sons, New York, 2000. · Zbl 0988.76005
[47] P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method. Vol. 2: Isothermal Laminar Flow, John Wiley & Sons, New York, 2000. · Zbl 0988.76005
[48] S. M. Griffies, A. J. Adcroft, H. Banks, C. W. Böning, E. P. Chassignet, G. Danabasoglu, S. Danilov, E. Deleersnijder, H. Drange, M. England, B. Fox-Kemper, R. Gerdes, A. Gnanadesikan, R. J. Greatbatch, R. W. Hallberg, E. Hanert, M. J. Harrison, S. Legg, C. M. Little, G. Madec, S. J. Marsland, M. Nikurashin, A. Pirani, H. L. Simmons, J. Schröter, B. L. Samuels, A.-M. Treguier, J. R. Toggweiler, H. Tsujino, G. K. Vallis, and L. White, Problems and prospects in large-scale ocean circulation models, in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, (Venice, Italy), vol. 2, J. Hall, D. E. Harrison, and D. Stammer, eds., ESA Publication WPP-306, 2010.
[49] S. M. Griffies, C. Böning, F. O. Bryan, E. P. Chassignet, R. Gerdes, H. Hasumi, A. Hirst, A. M. Treguier, and D. Webb, Developments in ocean climate modelling, Ocean Model., 2 (2000), pp. 123–192.
[50] J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 6011–6045. · Zbl 1122.76072
[51] C. Härtel, E. Meiburg, and F. Necker, Analysis and direct numerical simulation of the flow at a gravity current head. Part \(1\). Flow topology and front speed for slip and no-slip boundaries, J. Fluid Mech., 418 (2000), pp. 189–212, . · Zbl 0985.76042
[52] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155–177. · Zbl 0995.65128
[53] H. R. Hiester, The Application of Adaptive Mesh Techniques to Numerical Simulations of Gravity Current Flows, PhD thesis, Imperial College London, 2011.
[54] H. R. Hiester, M. D. Piggott, and P. A. Allison, The impact of mesh adaptivity on the gravity current front speed in a two-dimensional lock-exchange, Ocean Model., 38 (2011), pp. 1–21.
[55] H. R. Hiester, M. D. Piggott, P. E. Farrell, and P. A. Allison, Assessment of spurious mixing in adaptive mesh simulations of the two-dimensional lock-exchange, Ocean Model., 73 (2014), pp. 30–44.
[56] R. C. Kirby, Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM Trans. Math. Software, 30 (2004), pp. 502–516. · Zbl 1070.65571
[57] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Trans. Math. Software, 32 (2006), pp. 417–444.
[58] S. C. Kramer, C. J. Cotter, and C. C. Pain, Solving the Poisson equation on small aspect ratio domains using unstructured meshes, Ocean Model., 35 (2010), pp. 253–263.
[59] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, second English edition, revised and enlarged, Math. Appl. 2, translated from the Russian by R. A. Silverman and J. Chu, Gordon and Breach Science Publishers, New York, 1969.
[60] R. J. LeVeque, Finite–Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, UK, 2002. · Zbl 1010.65040
[61] A. Logg, K.-A. Mardal, and G. N. Wells, eds., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Lecture Notes in Comput. Sci. Engrg. 84, Springer, Berlin, 2012. · Zbl 1247.65105
[62] A. Logg and G. N. Wells, DOLFIN: Automated finite element computing, ACM Trans. Math. Software, 37 (2010), 20. · Zbl 1364.65254
[63] A. Loseille and F. Alauzet, Continuous mesh framework Part II: Validations and applications, SIAM J. Numer. Anal., 49 (2011), pp. 61–86, . · Zbl 1230.65019
[64] A. E. MacDonald, J. Middlecoff, T. Henderson, and J.-L. Lee, A general method for modeling on irregular grids, Int. J. High Performance Comput. Appl., 25 (2011), pp. 392–403.
[65] J. R. Maddison, C. J. Cotter, and P. E. Farrell, Geostrophic balance preserving interpolation in mesh adaptive linearised shallow-water ocean modelling, Ocean Model., 37 (2011), pp. 35–48.
[66] J. R. Maddison and P. E. Farrell, Directional integration on unstructured meshes via supermesh construction, J. Comput. Phys., 231 (2012), pp. 4422–4432. · Zbl 1247.65149
[67] G. R. Markall, F. Rathgeber, L. Mitchell, N. Loriant, C. Bertolli, D. A. Ham, and P. H. J. Kelly, Performance-portable finite element assembly using PyOP\(2\) and FEniCS, in Proceedings of Supercomputing: 28th International Supercomputing Conference (ISC 2013, Leipzig, Germany), J. M. Kunkel, T. Ludwig, and H. W. Meuer, eds., Lecture Notes in Comput. Sci. 7905, Springer, Berlin, 2013, pp. 279–289.
[68] D. R. Munday, D. P. Marshall, and M. D. Piggott, Idealised flow past an island in a dynamically adaptive finite element model, Ocean Dynamics, 60 (2010), pp. 835–850.
[69] K. B. Ølgaard and G. N. Wells, Optimizations for quadrature representations of finite element tensors through automated code generation, ACM Trans. Math. Software, 37 (2010), 8. · Zbl 1364.65063
[70] C. C. Pain, M. D. Piggott, A. J. H. Goddard, F. Fang, G. J. Gorman, D. P. Marshall, M. D. Eaton, P. W. Power, and C. R. E. de Oliveira, Three-dimensional unstructured mesh ocean modelling, Ocean Model., 10 (2005), pp. 5–33.
[71] C. C. Pain, A. P. Umpleby, C. R. E. De Oliveira, and A. J. H. Goddard, Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3771–3796. · Zbl 1008.76041
[72] M. D. Piggott, P. E. Farrell, C. R. Wilson, G. J. Gorman, and C. C. Pain, Anisotropic mesh adaptivity for multi-scale ocean modelling, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), pp. 4591–4611. · Zbl 1192.86009
[73] M. D. Piggott, G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Martin, and M. R. Wells, A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, Int. J. Numer. Methods Fluids, 56 (2008), pp. 1003–1015. · Zbl 1220.76045
[74] M. D. Piggott, C. C. Pain, G. J. Gorman, D. P. Marshall, and P. D. Killworth, Unstructured adaptive meshes for ocean modeling, in Ocean Modeling in an Eddying Regime, M. W. Hecht and H. Hasumi, eds., Geophys. Monograph Ser. 177, American Geophysical Union, Washington, DC, 2008, pp. 383–408.
[75] M. D. Piggott, C. C. Pain, G. J. Gorman, P. W. Power, and A. J. H. Goddard, h, r, and hr adaptivity with applications in numerical ocean modelling, Ocean Model., 10 (2005), pp. 95–113.
[76] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, A multi-resolution approach to global ocean modeling, Ocean Model., 69 (2013), pp. 211–232.
[77] T. D. Ringler and D. A. Randall, A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid, Monthly Weather Rev., 130 (2002), pp. 1397–1410.
[78] R. Salmon, Poisson-bracket approach to the construction of energy- and potential-enstrophy-conserving algorithms for the shallow-water equations, J. Atmospheric Sci., 61 (2004), pp. 2016–2036.
[79] J. E. Simpson, Gravity Currents in the Environment and the Laboratory, Ellis Horwood Limited, Hempstead, UK, 1987.
[80] J. Southern, G. J. Gorman, M. D. Piggott, and P. E. Farrell, Parallel anisotropic mesh adaptivity with dynamic load balancing for cardiac electrophysiology, J. Comput. Sci., 3 (2012), pp. 8–16.
[81] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971. · Zbl 0379.65013
[82] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21 (1984), pp. 995–1011. · Zbl 0565.65048
[83] Y.-H. Tseng and J. H. Ferziger, Mixing and available potential energy in stratified flows, Phys. Fluids, 13 (2001), pp. 1281–1293, . · Zbl 1184.76559
[84] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56 (1996), pp. 179–196. · Zbl 0851.65087
[85] Y. V. Vasilevskii and K. N. Lipnikov, An adaptive algorithm for quasioptimal mesh generation, Comput. Math. Math. Phys., 39 (1999), pp. 1468–1486. · Zbl 0981.65141
[86] A. Viré, J. Xiang, F. Milthaler, P. E. Farrell, M. D. Piggott, J.-P. Latham, D. Pavlidis, and C. C. Pain, Modelling of fluid-solid interactions using an adaptive mesh fluid model coupled with a combined finite-discrete element model, Ocean Dynamics, 62 (2012), pp. 1487–1501.
[87] Q. Wang, H. Zhou, and W. Decheng, Numerical simulation of wind turbine blade-tower interaction, J. Marine Sci. Appl., 11 (2012), pp. 321–327.
[88] L. White, V. Legat, and E. Deleersnijder, Tracer conservation for three-dimensional, finite-element, free-surface ocean modeling on moving prismatic meshes, Monthly Weather Rev., 136 (2008), pp. 420–442.
[89] C. Wilson, Modelling Multiple-Material Flows on Adaptive Unstructured Meshes, Ph.D. thesis, Imperial College London, 2009.
[90] K. B. Winters and E. A. D’Asaro, Diascalar flux and the rate of fluid mixing, J. Fluid Mech., 317 (1996), pp. 179–193, . · Zbl 0894.76082
[91] K. B. Winters, P. N. Lombard, J. J. Riley, and E. A. D’Asaro, Available potential energy and mixing in density-stratified fluids, J. Fluid Mech., 289 (1995), pp. 115–128, . · Zbl 0858.76095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.