Convergence of spectral discretizations of the Vlasov-Poisson system. (English) Zbl 1375.65118


65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q83 Vlasov equations
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Full Text: DOI arXiv


[1] T. P. Armstrong, R. C. Harding, G. Knorr, and D. Montgomery, Solution of Vlasov’s equation by transform methods, Methods Comput. Phys., 9 (1970), p. 29.
[2] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, CRC Press, Boca Raton, FL, 2004.
[3] E. Camporeale, G. L. Delzanno, B. K. Bergen, and J. D. Moulton, On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods, Comput. Phys. Comm., 198 (2015), pp. 47–58. · Zbl 1344.35147
[4] E. Camporeale, G. L. Delzanno, G. Lapenta, and W. Daughton, New approach for the study of linear Vlasov stability of inhomogeneous systems, Phys. Plasmas, 13 (2006), 092110.
[5] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, Berlin, Heidelberg, 1988. · Zbl 0658.76001
[6] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Scientific Computation, Springer, Berlin, Heidelberg, 2010. · Zbl 1093.76002
[7] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38 (1982), pp. 67–86. · Zbl 0567.41008
[8] C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), pp. 330–351.
[9] G. L. Delzanno, Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301 (2015), pp. 338–356. · Zbl 1349.76568
[10] F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166–187. · Zbl 0998.65138
[11] R. Fitzpatrick, Plasma Physics, CRC Press, Boca Raton, FL, 2014.
[12] D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics Monographs 8, Springer, Berlin, Heidelberg, 1992. · Zbl 0774.41010
[13] R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, Plasma Physics Series, Institute of Physics Philadelphia, 1995. · Zbl 1045.82001
[14] R. Hockney and J. Eastwood, Computer Simulation Using Particles, CRC Press, Boca Raton, FL, 1988. · Zbl 0662.76002
[15] J. P. Holloway, Spectral velocity discretizations for the Vlasov-Maxwell equations, Transport Theory Statist. Phys., 25 (1996), pp. 1–32. · Zbl 0864.76101
[16] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.
[17] N. F. Loureiro, W. Dorland, L. Fazendeiro, A. Kanekar, A. Mallet, M. S. Vilelas, and A. Zocco, Viriato: A Fourier-Hermite Spectral Code for Strongly Magnetised Fluid-Kinetic Plasma Dynamics, preprint, , 2015. · Zbl 1375.76129
[18] N. F. Loureiro, A. A. Schekochihin, and A. Zocco, Fast collisionless reconnection and electron heating in strongly magnetized plasmas, Phys. Rev. Lett., 111 (2013), 025002.
[19] H. Ma and W. Sun, A Legendre–Petrov–Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), pp. 1425–1438, . · Zbl 0986.65095
[20] G. Manzini, G. L. Delzanno, J. Vencels, and S. Markidis, A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys., 317 (2016), pp. 82–107, . · Zbl 1349.76572
[21] J. T. Parker and P. J. Dellar, Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit, J. Plasma Phys., 81 (2015), 305810203.
[22] M. Pulvirenti and J. Wick, Convergence of Galerkin approximation for two-dimensional Vlasov-Poisson equation, Z. Angew. Math. Phys., 35 (1984), pp. 790–801, . · Zbl 0547.65082
[23] J. Shen, A new dual-Petrov–Galerkin method for third and higher odd-order differential equations: Application to the KDV equation, SIAM J. Numer. Anal., 41 (2003), pp. 1595–1619. · Zbl 1053.65085
[24] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods, Algorithms, Analysis and Applications, Springer, New York, 2011. · Zbl 1227.65117
[25] S. L. Sobolev, Partial Differential Equations of Mathematical Physics, Dover, New York, 1964. · Zbl 0123.06508
[26] J. Vencels, G. L. Delzanno, A. Johnson, I. B. Peng, E. Laure, and S. Markidis, Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments, Procedia Comput. Sci., 51 (2015), pp. 1148–1157.
[27] J. Vencels, G. L. Delzanno, G. Manzini, S. Markidis, I. Bo Peng, and V. Roytershteyn, SpectralPlasmaSolver: A spectral code for multiscale simulations of collisionless, magnetized plasmas, J. Phys. Conference Ser., 719 (2016), 012022.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.