zbMATH — the first resource for mathematics

Sur les caractères des groupes de Lie. (On the characters of Lie groups). (French) Zbl 0679.22009
Let G be a Lie group with Lie algebra \({\mathfrak g}\). Let \(\pi\) be a representation of G. The author studies the factor generated by \(\pi\) (G). The main result of the paper is the existence of operators of Hilbert-Schmidt class of the form \(\pi (u^ k*\phi)\) for \(\phi\in {\mathcal D}(G)\) and \(u\in \hat I\), where \(\hat I\) is the intersection of all the primitive ideals of U(\({\mathfrak g})\), containing the kernel I of the infinitesimal representation of U(\({\mathfrak g})\), corresponding to the representation \(\pi\). In the case of the normal factor representation \(\pi\) the author proves the existence of a trace class operator of the form \(\pi\) (\(\phi)\) for some \(\phi\in {\mathcal D}(G)\) relative to the factor generated by \(\pi\) (G).
Reviewer: S.Prishchepionok

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E27 Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
17B15 Representations of Lie algebras and Lie superalgebras, analytic theory
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
17B35 Universal enveloping (super)algebras
46L35 Classifications of \(C^*\)-algebras
Full Text: DOI
[1] Bernat, P, Représentations des groupes de Lie résolubles, (1972), Dunod Paris · Zbl 0248.22012
[2] Bialynicki-Birula, A, On homogeneous affine spaces of linear algebraic groups, Amer. J. math., 85, 577-582, (1963) · Zbl 0116.38202
[3] Borho, W; Gabriel, P; Rentschler, T, Primideale in einhullender auflosbarer Lie algebren, () · Zbl 0293.17005
[4] Borho, W; Kraft, M, Uber die Gelfand-Kirillov dimension, Math. ann., 220, 1-24, (1978) · Zbl 0306.17005
[5] Bourbaki, N, Intégration, (1963), Hermann Paris, Chap. IV · Zbl 0156.03204
[6] Bourbaki, N, “groupes et algèbres de Lie,” chaps. 7 et 8, () · Zbl 0483.22001
[7] Charbonnel, J.Y, Sue LES semi-caractères des groupes de Lie résolubles connexes, J. funct. anal., 41, 175-203, (1981) · Zbl 0471.22010
[8] Charbonnel, J.Y, Idéaux primitifs et opérateurs compacts, Bull. soc. math. France, 111, 203-234, (1983) · Zbl 0535.22016
[9] Dixmier, J, LES C∗-algèbres et leurs représentations, () · Zbl 0152.32902
[10] Dixmier, J, Sur LES idéaux génériques dans LES algèbres enveloppantes, Bull. soc. math. France, 96, 17-26, (1972) · Zbl 0235.17008
[11] Dixmier, J, ()
[12] Dixmier, J, Idéaux primitifs dans LES algèbres enveloppantes, J. algebra, 48, 96-112, (1977) · Zbl 0366.17007
[13] Dixmier, J; Malliavin, P, Factorisation de fonctions et de vecteurs indéfiniment différentiables, Bull. sci. math., 102, 305-330, (1978) · Zbl 0392.43013
[14] Duflo, M, Sur LES extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. ecole norm. sup., 5, 71-120, (1972) · Zbl 0241.22030
[15] Duflo, M, Théorie de MacKey pour LES groupes de Lie algébriques, Acta math., 149, 153-213, (1982) · Zbl 0529.22011
[16] \scJ. E. Humphreys, “Linear Algebraic Groups,” Springer-Verlag, New York. · Zbl 0325.20039
[17] Khalgui, M.S, Sur LES caractères des groupes de Lie résolubles, Publications mathématiques de l’université Paris VII, Vol. 2, (1978)
[18] \scC. Moeglin, Idéaux primitifs des algèbres enveloppantes, J. Math. Pures appl.\bf59 265-336. · Zbl 0454.17006
[19] Moeglin, C; Rentschler, R, Orbites d’un groupe algébrique dans l’espace des idéaux rationnels d’une algèbre enveloppante, Bull. soc. math. France, 109, 403-426, (1981) · Zbl 0495.17006
[20] Moeglin, C; Rentschler, R, Sur la classification des idéaux primitifs des algèbres enveloppantes, Bull. soc. math. France, 112, 3-40, (1984) · Zbl 0549.17007
[21] Mostow, G.D, Fully reducible subgroups of algebraic groups, Amer. J. math., 78, 200-221, (1956) · Zbl 0073.01603
[22] Poulsen, N.S, On C∞ vectors and intertwining bilinear forms for representations of Lie groups, J. funct. anal., 9, 87-120, (1972) · Zbl 0237.22013
[23] Nelson, E, Analytic vectors, Ann. math., 70, 572-615, (1959) · Zbl 0091.10704
[24] Pukanszky, L, Action of algebraic groups of automorphisms on the dual of a class of type I groups, Ann. sci. ecole norm. sup., 5, 379-396, (1972) · Zbl 0263.22011
[25] Pukanszky, L, Characters of connected Lie groups, Acta math., 133, 81-137, (1974) · Zbl 0323.22011
[26] Rentschler, R, L’injectivité de l’application de Dixmier pour LES algèbres de Lie résolubles, Invent. math., 23, 49-72, (1974) · Zbl 0299.17003
[27] Rosenlicht, M, Some rationality questions on algebraic groups, Ann. math. pura appl., 43, 25-50, (1957) · Zbl 0079.25703
[28] Shafarevitch, J.R, Fondements de la géométrie algébrique, (1972), Edition “Science,” Moscow, [Russian]
[29] Serre, J.P, Faisceaux algébriques cohérents, Ann. math., 61, 197-367, (1955) · Zbl 0067.16201
[30] Tauvel, P, Sur LES quotients premiers de l’algèbre enveloppante d’une algèbre de Lie résoluble, Bull. soc. math. France, 106, 177-205, (1978) · Zbl 0399.17003
[31] Warner, G, Harmonic analysis on semi-simple Lie groups I, (1972), Springer-Verlag Berlin · Zbl 0265.22020
[32] Warner, G, Harmonic analysis on semi-simple Lie groups II, (1972), Springer-Verlag Berlin · Zbl 0265.22021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.