Evans, Lawrence C. The perturbed test function method for viscosity solutions of nonlinear PDE. (English) Zbl 0679.35001 Proc. R. Soc. Edinb., Sect. A 111, No. 3-4, 359-375 (1989). In this carefully written, largely expository paper the author shows how to combine the perturbed test function method with maximum principle arguments related to viscosity solutions for nonlinear first and second order partial differential equations. This method replaces the fixed smooth test function used in the theory of viscosity solutions [see M. G. Crandall and P.-L. Lions, Trans. Am. Math. Soc. 277, 1-42 (1983; Zbl 0599.35024)] with modified test functions which contain lower order correctors. Such techniques have already been successful in probability and in the calculus of variations. The author’s first example is homogenization for quasilinear elliptic PDEs with highly oscillatory, periodic coefficients. The second is concerned with the convergence of a system of first order Hamilton-Jacobi PDEs to a single, second order quasilinear parabolic PDE. Reviewer: Simeon Reich Cited in 5 ReviewsCited in 147 Documents MSC: 35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations 35F20 Nonlinear first-order PDEs 35J60 Nonlinear elliptic equations 35B20 Perturbations in context of PDEs 35G20 Nonlinear higher-order PDEs Keywords:perturbed test function method; maximum principle; viscosity solutions; nonlinear first and second order partial differential equations; Hamilton-Jacobi PDEs Citations:Zbl 0599.35024 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1002/cpa.3160390604 · Zbl 0602.35030 · doi:10.1002/cpa.3160390604 [2] Bensoussan, Asymptotic Analysis for Periodic Structures (1978) [3] Attouch, Variational Convergence for Functions and Operators (1984) · Zbl 0561.49012 [4] DOI: 10.1007/BF01851001 · Zbl 0155.24203 · doi:10.1007/BF01851001 [5] DOI: 10.1002/cpa.3160260405 · Zbl 0253.60065 · doi:10.1002/cpa.3160260405 [6] Lions, Generalized Solutions of Hamilton-Jacobi Equations (1982) [7] Kushner, Approximation and Weak Convergence Methods for Random Processes (1984) · Zbl 0551.60056 [8] DOI: 10.1007/BF00281780 · Zbl 0708.35019 · doi:10.1007/BF00281780 [9] Gilbarg, Elliptic Partial Differential Equations of Second Order (1983) · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0 [10] Gantmacher, The Theory of Matrices II (1960) · Zbl 0088.25103 [11] DOI: 10.1007/BF01762357 · Zbl 0636.35027 · doi:10.1007/BF01762357 [12] DOI: 10.1512/iumj.1978.27.27059 · Zbl 0408.35037 · doi:10.1512/iumj.1978.27.27059 [13] Evans, Nonlinear Semigroups, Partial Differential Equations and Attractors 1248 (1987) · doi:10.1007/BFb0077416 [14] Crandall, Proc. International Sym. on Diff. Eq. (1984) [15] DOI: 10.1090/S0002-9947-1983-0690039-8 · doi:10.1090/S0002-9947-1983-0690039-8 [16] Boccardo, Studio di Problemi-Limite delta Analisi Funzionale pp 13– (1982) [17] DOI: 10.1137/0326063 · Zbl 0674.49027 · doi:10.1137/0326063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.