×

zbMATH — the first resource for mathematics

Algebra of functions on the quantum group SU(2). (English. Russian original) Zbl 0679.43006
Funct. Anal. Appl. 22, No. 3, 170-181 (1988); translation from Funkts. Anal. Prilozh. 22, No. 3, 1-14 (1988).
See the review in Zbl 0661.43001.

MSC:
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
22E30 Analysis on real and complex Lie groups
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
43A80 Analysis on other specific Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. L. Woronowicz, ”Twisted SU(2) group. An example of a non-commutative differential calculus,” Preprint No. 1/86, Warszawa (1986). · Zbl 0676.46050
[2] V. D. Drinfel’d, ”Quantum groups,” J. Sov. Math.,41, No. 2 (1988).
[3] A. A. Belavin and V. G. Drinfel’d, ”Triangular equations and simple Lie algebras,” Preprint ITF, No. 18 (1982).
[4] E. K. Sklyanin, ”Some algebraic structures connected with the Yang?Baxter equation. Representations of quantum algebra,” Funkts. Anal. Prilozhen.,17, No. 4, 34-48 (1983). · Zbl 0536.58007
[5] M. Jimbo, ”A q-difference analogue of U(J) and the Yang?Baxter equation,” Lett. Math. Phys.,10, 63-69 (1985). · Zbl 0587.17004 · doi:10.1007/BF00704588
[6] E. K. Sklyanin, ”An algebra generated by quadratic relations,” Usp. Mat. Nauk,40, No. 2, 214 (1985).
[7] A. Weinstein, ”The local structure of Poisson manifolds,” J. Diff. Geom.,18, No. 3, 523-557 (1983). · Zbl 0524.58011
[8] V. I. Arnol’d and A. B. Givental?, ”Symplectic geometry,” Sov. Probl. Mat. Fundam. Napr., VINITI,4, 7-139 (1985).
[9] M. A. Semenov-Tian-Schansky, ”Dressing transformations and Poisson group actions,” Publ. RIMS Kyoto Univ.,21, No. 6, 1237-1260 (1985). · Zbl 0674.58038 · doi:10.2977/prims/1195178514
[10] A. A. Kirillov, Elements of Representations Theory [in Russian], Nauka, Moscow (1978). · Zbl 0415.60087
[11] J. Dixmier, C*-Algebras and Their Representations [Russian translation], Nauka, Moscow (1974). · Zbl 0288.46055
[12] N. Ya. Vilenkin, The Theory of Group Representations and Special Functions [in Russian], Nauka, Moscow (1965). · Zbl 0144.38003
[13] J. Dixmier, Universal Enveloping Algebras [Russian translation], Mir, Moscow (1978).
[14] S. L. Woronowicz, ”Compact matrix pseudogroups,” Commun. Math. Phys.,111, No. 4, 613-666 (1987). · Zbl 0627.58034 · doi:10.1007/BF01219077
[15] E. Abe, Hopf Algebras, Cambridge Tracts in Math., No. 74, Cambridge Univ. Press (1980).
[16] D. P. Zhelobenko and A. I. Shtern, Representations of Lie Groups [in Russian], Nauka, Moscow (1983). · Zbl 0521.22006
[17] H. Exton, q-Hypergeometrical Functions and Applications, Ellis Hoorwood Ltd., Chichester (1983). · Zbl 0514.33001
[18] G. Andrews and R. Askey, ”Enumeration of Partitions: the Role of Euler Series and ?-Orthogonal Polynomials” [Russian translation], Problems of Combinatorial Analysis, Mir, Moscow (1980), pp. 101-119.
[19] H. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Vol. 1, Nauka, Moscow (1973).
[20] L. D. Faddeev and L. A. Takhtajan, Liouville Model on the Lattice, Lect. Notes in Phys.,246 (1986), pp. 166-179.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.