# zbMATH — the first resource for mathematics

Extreme value theory for multivariate stationary sequences. (English) Zbl 0679.62039
The author considers multivariate extremal type theorems and some related problems in a setting where the assumptions of independence and linear normalization in the classical setting are weakened. For a stationary sequence of random vectors he introduces a distributional mixing condition which is an obvious extension of M. R. Leadbetter’s condition $$D(u_ n)$$ in the one-dimensional case [Z. Wahrscheinlichkeitstheorie verw. Gebiete 28, 289-303 (1974; Zbl 0265.60019)]. For a sequence satisfying this condition the following topics are studied.
(1) To obtain characterizations of the weak limit F of properly normalized partial maxima. (2) To study a condition under which the partial maxima behave as they would if the sequence were i.i.d. (3) To consider problems in connection with the independence of the margins of F.
Reviewer: T.Mori

##### MSC:
 62H05 Characterization and structure theory for multivariate probability distributions; copulas 60F05 Central limit and other weak theorems 60F99 Limit theorems in probability theory 60G10 Stationary stochastic processes 62G30 Order statistics; empirical distribution functions
Full Text:
##### References:
 [1] Amram, F, Multivariate extreme value distributions for stationary Gaussian sequences, J. multivariate anal., 16, 237-240, (1985) · Zbl 0578.60038 [2] Balkema, A.A; Resnick, S.I, MAX-infinite divisibility, J. appl. probab., 14, 309-319, (1977) · Zbl 0366.60025 [3] Berman, S.M, Convergence to bivariate limiting extreme value distributions, Ann. inst. statist. math., 13, 217-223, (1961) · Zbl 0119.15103 [4] Berman, S.M, Limit theorems for the maximum term in stationary sequences, Ann. math. statist., 35, 502-516, (1964) · Zbl 0122.13503 [5] Billinsley, P, () [6] Davis, R.A, Maxima and minima of stationary sequences, Ann. probab., 3, 453-460, (1979) · Zbl 0401.60019 [7] Davis, R.A, Limit laws for the maxium and minimum of stationary sequences, Z. wahrsch. verw. gebiete, 61, 34-42, (1982) [8] Deheuvels, P, Caractérisation complète des lois extrèmes multivariées et de la convergence aux types extrèmes, Publ. inst. statist. unv. Paris, 23, (1978) · Zbl 0414.60043 [9] Deheuvels, P, Propriétés d’existence et propriétés topologiques des fonctions de dépendance avec applications à la convergence des types pour LES lois multivariées, C.R. acad. sci. Paris A, 288, 145-148, (1979) · Zbl 0396.60019 [10] Deheuvels, P, Détermination des lois limites jointes de l’ensemble des points extrêmes d’un échantillon multivarié, C.R. acad. sci. Paris A, 288, 217-220, (1979) · Zbl 0396.60036 [11] Deheuvels, P, A decomposition of infinite order and extreme multivariate distributions, () · Zbl 0601.62066 [12] Deheuvels, P, Point processes and multivariate extreme values, J. multivariate anal., 13, 257-272, (1983) · Zbl 0519.60045 [13] Finkelshteyn, B.V, Limiting distribution of extremes of a variational series of a two dimensional random variable, Dokl. akad. nauk SSSR, 91, (1953) [14] Galambos, J, () [15] Geffroy, J, Contributions à la theorie des valeurs extrêmes, Publ. inst. statist. univ. Paris, 7/8, 37-185, (1958/1959) [16] Haan, L.de; Resnick, S.I, Limit theory for multivariate sample extremes, Z. warhsch. verw. gebiete, 40, 317-337, (1977) · Zbl 0375.60031 [17] Hsing, T, Point processes associated with extreme value theory, () [18] Leadbetter, M.R, On extreme values in stationary sequences, Z. wahrsch. verw. gebiete, 28, 289-303, (1974) · Zbl 0265.60019 [19] Leadbetter, M.R; Lindgren, G; Rootzén, H, () [20] Lindgren, G, A note on the asymptotic independence of high level crosings for dependent Gaussian processes, Ann. probab., 2, 535-539, (1974) · Zbl 0288.60038 [21] Loynes, R.M, Extreme values in uniformly mixing stationary stochastic process, Ann. math. statist., 36, 993-999, (1965) · Zbl 0178.53201 [22] Mikhailov, V.G, Asymptotic independence of vector components of multivariate extreme order statistics, Theory probab. appl., 19, 817-821, (1974) · Zbl 0327.62012 [23] Pickands, J, Multivariate negative exponential and extreme value distributions, (1980), University of Pennsylvania, Unpublished manuscript [24] Rootzén, H, (), Report 36 [25] Sibuya, M, Bivariate extreme statistics, I, Ann. inst. statist. math., 11, 195-210, (1960) · Zbl 0095.33703 [26] Tiago de Oliveira, J, Extremal distributions, Rev. fac. sci. lisboa ser A, 7, 215-227, (1958) [27] Tiago de Oliveira, J, Structure theory of bivariate extremes: extension, Estudos math. estat. econom., 7, 165-195, (1962/1963) [28] Watson, G.S, Extreme values in samples from m-dependent stationary stochastic processes, Ann. math. statist., 25, 798-800, (1954) · Zbl 0056.36204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.