×

zbMATH — the first resource for mathematics

Generalized robust gain-scheduled PID controller design for affine LPV systems with polytopic uncertainty. (English) Zbl 1372.93091
Summary: In the paper a generalized guaranteed cost output-feedback robust gain-scheduled PID controller synthesis is presented for affine linear parameter-varying systems under polytopic model uncertainty. The controller synthesis is generalized in a sense that it covers robust, robust gain-scheduled, and robust switched (with arbitrary switching algorithm) PID controller design. The proposed centralized/decentralized controller method is based on Bellman-Lyapunov equation, guaranteed cost, and parameter-dependent quadratic stability. The proposed sufficient robust stability and performance conditions are derived in the form of Bilinear Matrix Inequalities (BMI) which can efficiently be solved or further linearized. As the main result, the suggested performance and stability conditions without any restriction on the controller structure are convex functions of the scheduling and uncertainty parameters. Hence, there is no need for applying multi-convexity or other relaxation techniques and consequently the proposed solution delivers a less conservative design method. The viability of the novel design technique is demonstrated and evaluated through numerical examples.

MSC:
93B35 Sensitivity (robustness)
93C05 Linear systems in control theory
93B50 Synthesis problems
93D09 Robust stability
Software:
PENBMI; PENLAB; YALMIP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shamma, J. S., (Mohammadpour, J.; Scherer, C. W., Control of Linear Parameter Varying Systems with Applications, (2012), Springer), 3-26
[2] Wu, F., Control of Linear Parameter Varying Systems, (1995), University of California, Berkeley, Ph.d. thesis
[3] Seiler, P., Stability analysis with dissipation inequalities and integral quadratic constraints, IEEE Trans. Automat. Control, 60, 6, 1704-1709, (2015) · Zbl 1360.93523
[4] Packard, A., Gain scheduling via linear fractional transformations, Systems Control Lett., 22, 2, 79-92, (1994) · Zbl 0792.93043
[5] Apkarian, P.; Gahinet, P., A convex characterization of gain-scheduled H\(\infty\) controllers, IEEE Trans. Automat. Control, 40, 5, 853-864, (1995) · Zbl 0826.93028
[6] Megretski, A.; Rantzer, A., System analysis via integral quadratic constraints, IEEE Trans. Automat. Control, 42, 6, 819-830, (1997) · Zbl 0881.93062
[7] Osuský, J.; Veselý, V., Robust gain scheduling control design in frequency domain, Int. Rev. Autom. Control, 7, 5, 476-484, (2014)
[8] Dabiri, A.; Kulcsar, B.; Koroglu, H., Distributed LPV state-feedback control under control input saturation, IEEE Trans. Automat. Control, 62, 5, 2450-2456, (2016) · Zbl 1366.93493
[9] Luspay, T.; Péni, T.; Kulcsár, B., (Javad, M.; Scherer, C., Control of Linear Parameter Varying Systems with Applications, (2012), Springer), 461-482
[10] Veenman, J.; Scherer, C. W., A synthesis framework for robust gain-scheduling controllers, Automatica, 50, 11, 2799-2812, (2014) · Zbl 1300.93062
[11] Wang, S.; Pfifer, H.; Seiler, P., Robust synthesis for linear parameter varying systems using integral quadratic constraints, Automatica, 68, 111-118, (2016) · Zbl 1334.93070
[12] Wei, G.; Wang, Z.; Li, W.; Ma, L., A survey on gain-scheduled control and filtering for parameter-varying systems, Discrete Dyn. Nat. Soc., 2014, 10, (2014)
[13] Leith, D. J.; Leithead, W. E., Survey of gain-scheduling analysis and design, Internat. J. Control, 73, 11, 1001-1025, (2000) · Zbl 1006.93534
[14] Rugh, W. J.; Shamma, J. S., Survey research on gain scheduling, Automatica, 36, 10, 1401-1425, (2000) · Zbl 0976.93002
[15] Becker, G.; Packard, A., Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback, Systems Control Lett., 23, 3, 205-215, (1994) · Zbl 0815.93034
[16] I.E. Kose, F. Jabbari, W.E. Schmitendorf, A direct characterization of L2-gain controllers for LPV systems, in: 35th IEEE Conference on Decision and Control, vol. 4, 1996, pp. 3990-3995
[17] Gahinet, P.; Apkarian, P.; Chilali, M., Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Trans. Automat. Control, 41, 3, 436-442, (1996) · Zbl 0854.93113
[18] Wang, F.; Balakrishnan, V., Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems, IEEE Trans. Automat. Control, 47, 5, 720-734, (2002) · Zbl 1364.93582
[19] Veselý, V.; Ilka, A., Gain-scheduled PID controller design, J. Process Control, 23, 8, 1141-1148, (2013)
[20] Y. Liu, J. Yang, C. Li, Finite-time stability analysis and controller synthesis for switched linear parameter-varying systems, in: 33rd Chinese Control Conference, CCC, 2014, pp. 4360-4365
[21] Sato, M., Filter design for LPV systems using quadratically parameter-dependent Lyapunov functions, Automatica, 42, 11, 2017-2023, (2006) · Zbl 1261.93085
[22] Bara, G. I.; Daafouz, J.; Kratz, F.; Ragot, J., Parameter-dependent state observer design for affine LPV systems, Internat. J. Control, 74, 16, 1601-1611, (2001) · Zbl 1101.93302
[23] Apkarian, P.; Tuan, H. D., Parameterized LMIs in control theory, SIAM J. Control Optim., 38, 4, 1241-1264, (2000) · Zbl 0960.93012
[24] Tuan, H. D.; Apkarian, P., Relaxations of parameterized LMIs with control applications, Internat. J. Robust Nonlinear Control, 9, 2, 59-84, (1999) · Zbl 0919.93028
[25] H. Ichihara, E. Nobuyama, Difference of multiconvex relaxation of parameterized LMIs: control applications, in: SICE 2003 Annual Conference, vol. 1, 2003, pp. 150-155
[26] H. Ichihara, T. Ishii, E. Nobuyama, Stability analysis and control synthesis with D.C. relaxation of parameterized LMIs, in: European Control Conference, ECC, 2003, pp. 2047-2050
[27] F.D. Adegas, J. Stoustrup, Structured control of affine linear parameter varying systems, in: Proceedings of the 2011 American Control Conference, 2011, pp. 739-744
[28] Veselý, V.; Ilka, A., Design of robust gain-scheduled PI controllers, J. Franklin Inst. B, 352, 4, 1476-1494, (2015) · Zbl 1395.93220
[29] A. Ilka, V. Veselý, T. McKelvey, Robust gain-scheduled PSD controller design from educational perspective, in: Preprints of the 11th IFAC Symposium on Advances in Control Education, Bratislava, Slovakia, 2016, pp. 354-359
[30] N. Aouani, S. Salhi, G. Garcia, M. Ksouri, Static output feedback control for LPV systems under affine uncertainty structure, in: 3rd International Conference on Systems and Control, 2013, pp. 874-879
[31] M. Sato, Discrete-time Gain-Scheduled Output-Feedback controllers exploiting inexact scheduling parameters, in: IEEE International Symposium on Computer-Aided Control System Design, CACSD, 2011, pp. 1032-1037
[32] Sato, M.; Peaucelle, D., Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems, Automatica, 49, 4, 1019-1025, (2013) · Zbl 1284.93112
[33] M. Sato, Gain-scheduled output feedback controllers for discrete-time LPV systems using bounded inexact scheduling parameters, in: 54th IEEE Conference on Decision and Control, CDC, 2015, pp. 730-735
[34] Veselý, V.; Ilka, A., Unified robust gain-scheduled and switched controller design for linear continuous-time systems, Int. Rev. Autom. Control, 8, 3, 251-259, (2015)
[35] Emedi, Z.; Karimi, A., Fixed-structure LPV discrete-time controller design with induced L2-norm and H2 performance, Internat. J. Control, 89, 3, 494-505, (2016) · Zbl 1332.93135
[36] D. Petersson, J. Löfberg, LPV H2-controller synthesis using nonlinear programming, in: Proceedings of the 18th IFAC World Congress, 2011, pp. 6692-6696
[37] Athans, M.; Falb, P., Optimal control, (McGraw-Hill Electrical and Electronik Engineering Series, (1966), McGraw-Hill Publishing Company, Ltd, Maidenhead, Berksh, New York), 879 · Zbl 0196.46303
[38] D. Henrion, J. Löfberg, M. Kočvara, M. Stingl, Solving polynomial static output feedback problems with PENBMI, in: 44th IEEE Conference on Decision and Control, and European Control Conference, CDC-ECC ’05, 2005, pp. 7581-7586
[39] Fiala, J.; Kočvara, M.; Stingl, M., PENLAB: A MATLAB solver for nonlinear semidefinite optimization, Math. Programm. Comput., (2013), submitted for publication
[40] Veselý, V.; Rosinová, D., Robust PID-PSD controller design: BMI approach, Asian J. Control, 15, 2, 469-478, (2013) · Zbl 1327.93145
[41] Dorato, P.; Abdallah, C. T.; Cerone, V., Linear quadratic control: an introduction, (2000), Krieger Publishing Company
[42] Ilka, A.; Veselý, V., Gain-scheduled controller design: variable weighting approach, J. Electr. Eng., 65, 2, 116-120, (2014)
[43] Kuncevic, V. M.; Lycak, M. M., Control Systems Design using Lyapunov Function Approach, (1977), Nauka, Moscow, (in Russian)
[44] J. Löfberg, YALMIP : A toolbox for modeling and optimization in MATLAB, in: Proceedings of the CACSD Conference, 2004, Taipei, Taiwan
[45] Peaucelle, D.; Arzelier, D.; Bachelier, O.; Bernussou, J., A new robust D-stability condition for real convex polytopic uncertainty, Systems Control Lett., 40, 1, 21-30, (2000) · Zbl 0977.93067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.