×

zbMATH — the first resource for mathematics

A new geometric modeling approach for woven fabric based on Frenet frame and spiral equation. (English) Zbl 1376.65019
Summary: Realistic woven fabric appearance is very important for computer graphics applications. The appearance of a particular woven fabric is determined by multi-scale geometric structure and light directional reflectance. Accurately modeling structural detail of the fabric can produce realistic rendering effects of fabric appearance. But modeling these complex geometric details of woven fabrics is challenging. In this paper, a novel geometric method of modeling structural detail of woven fabric is presented based on the image. According to a single micro image, we propose efficient image processing techniques to capture the fine-scale detail geometric characters of fabric structure, which results in the highly efficient modeling advantage of our method over existing methods. Then considering the composite structure characters of fiber and yarn, the Frenet frame is used to model the yarn geometric structure and the spiral equation is used to present the helix twisting structure of fiber on the yarn. Based on this geometric model, the woven fabric’s detail structure can be visualized realistically. Compared with the original fabric image, our method can model the fabric’s 3D geometric structure, and obtain high-quality rendering effects.

MSC:
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
74E25 Texture in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Swery, E. E.; Allen, T.; Kelly, P., Automated tool to determine geometric measurements of woven textiles using digital image analysis techniques, Text. Res. J., 86, 6, 618-635, (2016)
[2] Lim, J.; Kim, S., Analysis of woven fabric structure using image analysis and artificial intelligence, Fibers Polym., 12, 8, 1062-1068, (2011)
[3] Gan, J. M.; Bickerton, S.; Battley, M., Quantifying variability within Glass fibre reinforcements using an automated optical method, Composites A, 43, 8, 1169-1176, (2012)
[4] Cardamone, J. M.; Damert, W. C.; Phillips, J. G.; Marmer, W. N., Digital image analysis for fabric assessment, Text. Res. J., 72, 10, 906-916, (2002)
[5] Kang, T. J.; Choi, S. H.; Kim, S. M.; Oh, K. W., Automatic structure analysis and objective evaluation of woven fabric using image analysis, Text. Res. J., 71, 3, 261-270, (2001)
[6] Shin, E. H.; Cho, K. S.; Seo, M. H.; Kim, H., Determination of electrospun fiber diameter distributions using image analysis processing, Macromol. Res., 16, 4, 314-319, (2008)
[7] Fonseca, J.; Nadimi, S.; Reyes-Aldasoro, C. C.; O’Sullivan, C.; Coop, M. R., Image-based investigation into the primary fabric of stress-transmitting particles in sand, Soils Found., 56, 5, 818-834, (2016)
[8] Abouelela, A.; Abbas, H. M.; Eldeeb, H.; Wahdan, A. A.; Nassar, S. M., Automated vision system for localizing structural defects in textile fabrics, Pattern Recognit. Lett., 26, 10, 1435-1443, (2005)
[9] Pollitt, J., The geometry of cloth structure, J. Text. Inst. Proc., 40, 1, 11-22, (1949)
[10] Duan, Y.; Keefe, M.; Bogetti, T. A.; Powers, B., Finite element modeling of transverse impact on a ballistic fabric, Int. J. Mech. Sci., 48, 1, 33-43, (2006) · Zbl 1192.74280
[11] O. Etzmuß, M. Keckeisen, W. Straßer, A fast finite element solution for cloth modelling, in: Proceedings of Pacific Conference on Computer Graphics and Applications, PG, 2003, pp. 244-251.
[12] Wang, Z.; Zhang, L.; Song, J.; Cao, G.; Liu, X., A novel approach for modeling and simulation of helix twisting structure based on mass-spring model, Adv. Mech. Eng., 5, 4, 1-10, (2013)
[13] Zhao, S.; Jakob, W.; Marschner, S.; Bala, K., Building volumetric appearance models of fabric using micro CT imaging, ACM Trans. Graph., 30, 4, (2011), 44:1-10
[14] Zhao, S.; Jakob, W.; Marschner, S.; Bala, K., Structure-aware synthesis for predictive woven fabric appearance, ACM Trans. Graph., 31, 4, (2012), 75:1-10
[15] Kyosev, Y.; Aurich, M., Investigations about the braiding angle and the cover factor of the braided fabrics using image processing and symbolic math toolbox of Matlab, Adv. Braiding Technol., 549-569, (2016)
[16] Cotorobai, V. F.; Zgura, I.; Birzu, M.; Frunza, S.; Frunza, L., Wicking behavior of fabrics described by simultaneous acquiring the images of the wet region and monitoring the liquid weight, Colloids Surf. A, 497, 146-153, (2016)
[17] Lin, H.; Zeng, X.; Sherburn, M.; Long, A. C.; Clifford, M. J., Automated geometric modelling of textile structures, Text. Res. J., 82, 16, 1689-1702, (2012)
[18] Wood, E. J., Applying Fourier and associated transforms to pattern characterization in textiles, Text. Res. J., 60, 4, 212-220, (1990)
[19] Xu, B., Identifying fabric structures with fast Fourier transform techniques, Text. Res. J., 66, 8, 496-506, (1996)
[20] Escofet, J.; Millán, M. S.; Ralló, M., Modeling of woven fabric structures based on Fourier image analysis, Appl. Opt., 40, 34, 6170-6176, (2001)
[21] Ralló, M.; Escofet, J.; Millán, M. S., Weave-repeat identification by structural analysis of fabric images, Appl. Opt., 42, 17, 3361-3372, (2003)
[22] Huang, C. C.; Liu, S. C.; Yu, W. H., Woven fabric analysis by image processing: part i: identification of weave patterns, Text. Res. J., 70, 6, 481-485, (2000)
[23] Kuo, C. F.J.; Shih, C. Y.; Lee, J. Y., Automatic recognition of fabric weave patterns by a fuzzy C-means clustering method, Text. Res. J., 74, 2, 107-111, (2004)
[24] Huang, C. C.; Liu, S. C., Woven fabric analysis by image processing. part ii: computing the twist angle, Text. Res. J., 71, 4, 362-366, (2001)
[25] Tunák, M.; Linka, A.; Volf, P., Automatic assessing and monitoring of weaving density, Fibers Polym., 10, 6, 830-836, (2009)
[26] Westin, S. H.; Arvo, J. R.; Torrance, K. E., Predicting reflectance functions from complex surfaces, ACM SIGGRAPH Comput. Graph., 26, 2, 255-264, (1992)
[27] V.L. Volevich, E.A. Kopylov, A.B. Khodulev, O.A. Karpenko, An approach to cloth synthesis and visualization, in: Proceedings of the 7th International Conference on Computer Graphics and Visualization, 1997, pp. 21-24.
[28] Adabala, N.; Magnenat-Thalmann, N., A procedural thread texture model, J. Graph. Tools, 8, 3, 33-40, (2003)
[29] N. Adabala, N. Magnenat-Thalmann, G. Fei, Visualization of woven cloth, in: Proceedings of the 14th Eurographics workshop on Rendering, 2003, pp. 178-185.
[30] Irawan, P.; Marschner, S., Specular reflection from woven cloth, ACM Trans. Graph., 31, 1, (2012), 11:1-20
[31] Zhang, J.; Baciu, G.; Zheng, D.; Liang, C., IDSS: A novel representation for woven fabrics, IEEE Trans. Vis. Comput. Graphics, 19, 3, 420-432, (2013)
[32] Isart, N.; Said, B. E.; Ivanov, D. S.; Hallett, S. R.; Mayugo, J. A.; Blanco, N., Internal geometric modelling of 3D woven composites: A comparison between different approaches, Compos. Struct., 132, 1219-1230, (2015)
[33] Druckrey, A. M.; Alshibli, K. A.; Al-Raoush, R. I., 3D characterization of sand particle-to-particle contact and morphology, Comput. Geotech., 74, 26-35, (2016)
[34] Smith, W. J., Modern optical engineering, (1966), Tata McGraw-Hill Education
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.