×

zbMATH — the first resource for mathematics

Post-Newtonian quasicircular initial orbits for numerical relativity. (English) Zbl 1373.83057
Summary: We use post-Newtonian (PN) approximations to determine the initial orbital and spin parameters of black hole binaries that lead to low-eccentricity inspirals when evolved with numerical relativity techniques. In particular, we seek initial configurations that lead to very small eccentricities at small separations, as is expected for astrophysical systems. We consider three cases: (i) quasicircular orbits with no radial velocity, (ii) quasicircular orbits with an initial radial velocity determined by radiation reaction, and (iii) parameters obtained from evolution of the PN equations of motion from much larger separations. We study eight cases of spinning, nonprecessing, unequal mass binaries. We then use several definitions of the eccentricity, based on orbital separations and waveform phase and amplitude, and find that using the complete 3PN Hamiltonian for quasicircular orbits to obtain the tangential orbital momentum, and using the highest-known-order radiation reaction expressions to obtain the radial momentum, leads to the lowest eccentricity. The accuracy of this method even exceeds that of inspiral data based on 3PN and 4PN evolutions.
Reviewer: Reviewer (Berlin)
MSC:
83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83-08 Computational methods for problems pertaining to relativity and gravitational theory
85A05 Galactic and stellar dynamics
Software:
Cactus
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Pretorius F 2005 Phys. Rev. Lett.95 121101
[2] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett.96 111101
[3] Baker J G, Centrella J, Choi D I, Koppitz M and van Meter J 2006 Phys. Rev. Lett.96 111102
[4] Abbott B et al 2016 Phys. Rev. Lett.116 061102
[5] Abbott B P et al 2016 Phys. Rev. Lett.116 241103
[6] Abbott B P et al 2016 Phys. Rev. D 94 064035
[7] Abbott B P et al 2016 Phys. Rev. Lett.116 241102
[8] Abbott B P et al 2016 Phys. Rev. Lett.116 221101
[9] Abbott B P et al 2016 Phys. Rev. X 6 041014
[10] Abbott B P et al 2016 Phys. Rev. X 6 041015
[11] Lovelace G et al 2016 Class. Quantum Grav.33 244002
[12] Peters P 1964 Phys. Rev.136 B1224
[13] Mroue A H, Pfeiffer H P, Kidder L E and Teukolsky S A 2010 Phys. Rev. D 82 124016
[14] Lousto C O, Healy J and Nakano H 2016 Phys. Rev. D 93 044031
[15] Lousto C O and Zlochower Y 2013 Phys. Rev. D 88 024001
[16] Lousto C O and Healy J 2015 Phys. Rev. Lett.114 141101
[17] Szilagyi B, Blackman J, Buonanno A, Taracchini A, Pfeiffer H P, Scheel M A, Chu T, Kidder L E and Pan Y 2015 Phys. Rev. Lett.115 031102
[18] Baker J G, Campanelli M, Lousto C and Takahashi R 2002 Phys. Rev. D 65 124012
[19] Husa S, Hannam M, Gonzalez J A, Sperhake U and Brugmann B 2008 Phys. Rev. D 77 044037
[20] Campanelli M, Lousto C O, Nakano H and Zlochower Y 2009 Phys. Rev. D 79 084010
[21] Pfeiffer H P, Brown D A, Kidder L E, Lindblom L, Lovelace G and Scheel M A 2007 Class. Quantum Grav.24 S59
[22] Buonanno A, Kidder L E, Mroue A H, Pfeiffer H P and Taracchini A 2011 Phys. Rev. D 83 104034
[23] Purrer M, Husa S and Hannam M 2012 Phys. Rev. D 85 124051
[24] Buchman L T, Pfeiffer H P, Scheel M A and Szilagyi B 2012 Phys. Rev. D 86 084033
[25] Kelly B J, Tichy W, Campanelli M and Whiting B F 2007 Phys. Rev. D 76 024008
[26] Tichy W, Brügmann B, Campanelli M and Diener P 2003 Phys. Rev. D 67 064008
[27] Brandt S and Brügmann B 1997 Phys. Rev. Lett.78 3606
[28] Buonanno A, Chen Y and Damour T 2006 Phys. Rev. D 74 104005
[29] Damour T, Jaranowski P and Schafer G 2008 Phys. Rev. D 77 064032
[30] Steinhoff J, Hergt S and Schafer G 2008 Phys. Rev. D 77 081501
[31] Steinhoff J, Schafer G and Hergt S 2008 Phys. Rev. D 77 104018
[32] Steinhoff J, Hergt S and Schafer G 2008 Phys. Rev. D 78 101503
[33] Damour T, Jaranowski P and Schaefer G 2000 Phys. Rev. D 62 021501
[34] Damour T, Jaranowski P and Schaefer G 2001 Phys. Rev. D 63 (erratum)
[35] Hergt S and Schaefer G 2008 Phys. Rev. D 78 124004
[36] Ajith P et al 2007 arXiv:0709.0093 [gr-qc]
[37] Ossokine S, Boyle M, Kidder L E, Pfeiffer H P, Scheel M A and Szilagyi B 2015 Phys. Rev. D 92 104028
[38] Alvi K 2001 Phys. Rev. D 64 104020
[39] Chatziioannou K, Poisson E and Yunes N 2013 Phys. Rev. D 87 044022
[40] Arun K G, Buonanno A, Faye G and Ochsner E 2009 Phys. Rev. D 79 104023
[41] Blanchet L, Buonanno A and Faye G 2011 Phys. Rev. D 84 064041
[42] Pan Y et al 2010 Phys. Rev. D 81 084041
[43] Levi M and Steinhoff J 2015 J. High Energy Phys.JHEP06(2015) 059
[44] Damour T, Jaranowski P and Schafer G 2014 Phys. Rev. D 89 064058
[45] Damour T, Jaranowski P and Schäfer G 2015 Phys. Rev. D 91 084024
[46] Bernard L, Blanchet L, Bohe A, Faye G and Marsat S 2017 Phys. Rev. D 95 044026
[47] Hartung J, Steinhoff J and Schafer G 2013 Ann. Phys.525 359
[48] Levi M and Steinhoff J 2016 J. Cosmol. Astropart. Phys.JCAP01(2016) 011
[49] Levi M and Steinhoff J 2014 J. Cosmol. Astropart. Phys.JCAP12(2014) 003
[50] Levi M and Steinhoff J 2016 arXiv:1607.04252
[51] Zlochower Y, Baker J G, Campanelli M and Lousto C O 2005 Phys. Rev. D 72 024021
[52] Marronetti P, Tichy W, Brügmann B, Gonzalez J and Sperhake U 2008 Phys. Rev. D 77 064010
[53] Lousto C O and Zlochower Y 2008 Phys. Rev. D 77 024034
[54] Zlochower Y, Ponce M and Lousto C O 2012 Phys. Rev. D 86 104056
[55] Löffler F et al 2012 Class. Quantum Grav.29 115001
[56] Einstein toolkit home page: http://einsteintoolkit.org
[57] Cactus computational toolkit home page: http://cactuscode.org
[58] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav.21 1465
[59] Thornburg J 2004 Class. Quantum Grav.21 743
[60] Dreyer O, Krishnan B, Shoemaker D and Schnetter E 2003 Phys. Rev. D 67 024018
[61] Campanelli M, Lousto C O, Zlochower Y, Krishnan B and Merritt D 2007 Phys. Rev. D 75 064030
[62] Campanelli M, Kelly B J and Lousto C O 2006 Phys. Rev. D 73 064005
[63] Ansorg M, Brügmann B and Tichy W 2004 Phys. Rev. D 70 064011
[64] Bowen J M and York J W Jr 1980 Phys. Rev. D 21 2047
[65] Spectral Einstein code: www.black-holes.org/SpEC.html
[66] Cook G B and Pfeiffer H P 2004 Phys. Rev. D 70 104016
[67] Caudill M, Cook G B, Grigsby J D and Pfeiffer H P 2006 Phys. Rev. D 74 064011
[68] Lovelace G, Owen R, Pfeiffer H P and Chu T 2008 Phys. Rev. D 78 084017
[69] Ruchlin I, Healy J, Lousto C O and Zlochower Y 2017 Phys. Rev. D 95 024033
[70] Carroll S M 2004 Spacetime and Geometry: an Introduction to General Relativity (Reading, MA: Addison-Wesley)
[71] Yunes N and Berti E 2008 Phys. Rev. D 77 124006
[72] Zhang Z, Yunes N and Berti E 2011 Phys. Rev. D 84 024029
[73] Sago N, Fujita R and Nakano H 2016 Phys. Rev. D 93 104023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.