×

zbMATH — the first resource for mathematics

Simplified DM models with the full SM gauge symmetry: the case of \(t\)-channel colored scalar mediators. (English) Zbl 1373.81356
Summary: The general strategy for dark matter (DM) searches at colliders currently relies on simplified models. In this paper, we propose a new \(t\)-channel UV-complete simplified model that improves the existing simplified DM models in two important respects: (i) we impose the full SM gauge symmetry including the fact that the left-handed and the right-handed fermions have two independent mediators with two independent couplings, and (ii) we include the renormalization group evolution when we derive the effective Lagrangian for DM-nucleon scattering from the underlying UV complete models by integrating out the \(t\)-channel mediators. The first improvement will introduce a few more new parameters compared with the existing simplified DM models. In this study we look at the effect this broader set of free parameters has on direct detection and the mono-\(X + MET (X=jet, W,Z)\) signatures at 13TeV LHC while maintaining gauge invariance of the simplified model under the full SM gauge group. We find that the direct detection constraints require DM masses less than 10 GeV in order to produce phenomenologically interesting collider signatures. Additionally, for a fixed mono-W cross section it is possible to see very large differences in the mono-jet cross section when the usual simplified model assumptions are loosened and isospin violation between RH and LH DM-SM quark couplings are allowed.
MSC:
81T60 Supersymmetric field theories in quantum mechanics
85A40 Cosmology
83F05 Cosmology
Software:
FeynRules; PYTHIA8; ROOT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
[2] ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Eur. Phys. J.C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
[3] ATLAS collaboration, Search for new particles in events with one lepton and missing transverse momentum in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, JHEP09 (2014) 037 [arXiv:1407.7494] [INSPIRE]. · Zbl 1388.83920
[4] ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Phys. Rev.D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].
[5] CMS collaboration, Search for physics beyond the standard model in final states with a lepton and missing transverse energy in proton-proton collisions at\( \sqrt{s}=8 \)TeV, Phys. Rev.D 91 (2015) 092005 [arXiv:1408.2745] [INSPIRE].
[6] ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at\( \sqrt{s}=8 \)TeV with the ATLAS detector, Phys. Rev. Lett.112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].
[7] Askew, A.; Chauhan, S.; Penning, B.; Shepherd, W.; Tripathi, M., Searching for dark matter at hadron colliders, Int. J. Mod. Phys., A 29, 1430041, (2014)
[8] Buchmueller, O.; Dolan, MJ; McCabe, C., Beyond effective field theory for dark matter searches at the LHC, JHEP, 01, 025, (2014)
[9] Busoni, G.; Simone, A.; Jacques, T.; Morgante, E.; Riotto, A., On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel, JCAP, 09, 022, (2014)
[10] J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].
[11] LHC New Physics Working Group collaboration, D. Alves, Simplified Models for LHC New Physics Searches, J. Phys.G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
[12] Abdallah, J.; etal., Simplified models for dark matter searches at the LHC, Phys. Dark Univ., 9-10, 8, (2015)
[13] Kahlhoefer, F.; Schmidt-Hoberg, K.; Schwetz, T.; Vogl, S., Implications of unitarity and gauge invariance for simplified dark matter models, JHEP, 02, 016, (2016)
[14] Baek, S.; Ko, P.; Park, M.; Park, W-I; Yu, C., Beyond the dark matter effective field theory and a simplified model approach at colliders, Phys. Lett., B 756, 289, (2016) · Zbl 1400.81200
[15] Bell, NF; Cai, Y.; Dent, JB; Leane, RK; Weiler, TJ, Dark matter at the LHC: effective field theories and gauge invariance, Phys. Rev., D 92, 053008, (2015)
[16] Baek, S.; Ko, P.; Park, W-I, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP, 02, 047, (2012)
[17] Ko, P.; Li, J., Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM, Phys. Lett., B 765, 53, (2017)
[18] Ko, P.; Yokoya, H., Search for Higgs portal DM at the ILC, JHEP, 08, 109, (2016)
[19] A.J. Buras, Flavour Theory: 2009, PoS(EPS-HEP 2009)024 [arXiv:0910.1032] [INSPIRE].
[20] Jung, S.; Ko, P.; Yoon, YW; Yu, C., Renormalization group-induced phenomena of top pairs from four-quark effective operators, JHEP, 08, 120, (2014)
[21] G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
[22] D’Eramo, F.; Kavanagh, BJ; Panci, P., You can hide but you have to run: direct detection with vector mediators, JHEP, 08, 111, (2016)
[23] D’Eramo, F.; Procura, M., Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP, 04, 054, (2015)
[24] D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
[25] Bai, Y.; Tait, TMP, Searches with mono-leptons, Phys. Lett., B 723, 384, (2013)
[26] Baek, S.; Ko, P.; Park, W-I, Singlet portal extensions of the standard seesaw models to a dark sector with local dark symmetry, JHEP, 07, 013, (2013)
[27] Baek, S.; Ko, P.; Park, W-I, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP, 10, 067, (2014)
[28] Ko, P.; Tang, Y., Self-interacting scalar dark matter with local Z_{3} symmetry, JCAP, 05, 047, (2014)
[29] Ko, P.; Tang, Y., ΝλMDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2, Phys. Lett., B 739, 62, (2014) · Zbl 1306.83078
[30] P. Ko and W.-I. Park, Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio, arXiv:1405.1635 [INSPIRE].
[31] Ko, P.; Tang, Y., Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z_{3} symmetry as an example, JCAP, 01, 023, (2015)
[32] Baek, S.; Ko, P.; Park, W-I, Local Z_{2} scalar dark matter model confronting galactic gev -scale γ-ray, Phys. Lett., B 747, 255, (2015) · Zbl 1369.81119
[33] Ko, P.; Tang, Y., AMS02 positron excess from decaying fermion DM with local dark gauge symmetry, Phys. Lett., B 741, 284, (2015)
[34] Ko, P.; Tang, Y., Dark Higgs channel for FERMI gev γ-ray excess, JCAP, 02, 011, (2016)
[35] Ko, P.; Tang, Y., Icecube events from heavy DM decays through the right-handed neutrino portal, Phys. Lett., B 751, 81, (2015)
[36] Alves, A.; Berlin, A.; Profumo, S.; Queiroz, FS, Dirac-fermionic dark matter in U(1)_{X} models, JHEP, 10, 076, (2015)
[37] Alves, A.; Berlin, A.; Profumo, S.; Queiroz, FS, Dark matter complementarity and the Z′ portal, Phys. Rev., D 92, 083004, (2015)
[38] Alves, A.; Profumo, S.; Queiroz, FS, The dark Z′ portal: direct, indirect and collider searches, JHEP, 04, 063, (2014)
[39] Baek, S.; Ko, P.; Park, W-I; Senaha, E., Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP, 11, 116, (2012)
[40] Baek, S.; Ko, P.; Park, W-I; Senaha, E., Higgs portal vector dark matter : revisited, JHEP, 05, 036, (2013)
[41] Ko, P.; Park, W-I; Tang, Y., Higgs portal vector dark matter for gev scale γ-ray excess from galactic center, JCAP, 09, 013, (2014)
[42] S. Baek, P. Ko and W.-I. Park, Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross Section in Higgs Portal Dark Matter Models, Phys. Rev.D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].
[43] An, H.; Wang, L-T; Zhang, H., Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev., D 89, 115014, (2014)
[44] Papucci, M.; Vichi, A.; Zurek, KM, Monojet versus the rest of the world I: t-channel models, JHEP, 11, 024, (2014)
[45] A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified Models for Dark Matter Interacting with Quarks, JHEP11 (2013) 014 [Erratum ibid.1401 (2014) 162] [arXiv:1308.2679] [INSPIRE].
[46] Chang, S.; Edezhath, R.; Hutchinson, J.; Luty, M., Effective wimps, Phys. Rev., D 89, 015011, (2014)
[47] Bell, NF; Dent, JB; Galea, AJ; Jacques, TD; Krauss, LM; Weiler, TJ, Searching for dark matter at the LHC with a mono-Z, Phys. Rev., D 86, 096011, (2012)
[48] Brennan, AJ; McDonald, MF; Gramling, J.; Jacques, TD, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP, 05, 112, (2016)
[49] Choudhury, A.; Kowalska, K.; Roszkowski, L.; Sessolo, EM; Williams, AJ, Less-simplified models of dark matter for direct detection and the LHC, JHEP, 04, 182, (2016)
[50] Racco, D.; Wulzer, A.; Zwirner, F., Robust collider limits on heavy-mediator dark matter, JHEP, 05, 009, (2015)
[51] M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev.D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].
[52] Hisano, J.; Ishiwata, K.; Nagata, N., Gluon contribution to the dark matter direct detection, Phys. Rev., D 82, 115007, (2010)
[53] Gondolo, P.; Scopel, S., On the sbottom resonance in dark matter scattering, JCAP, 10, 032, (2013)
[54] Ibarra, A.; Wild, S., Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology, JCAP, 05, 047, (2015)
[55] Crivellin, A.; D’Eramo, F.; Procura, M., New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett., 112, 191304, (2014)
[56] Hisano, J.; Ishiwata, K.; Nagata, N.; Takesako, T., Direct detection of electroweak-interacting dark matter, JHEP, 07, 005, (2011) · Zbl 1298.81471
[57] Hisano, J.; Nagai, R.; Nagata, N., Effective theories for dark matter nucleon scattering, JHEP, 05, 037, (2015) · Zbl 1388.83920
[58] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett.112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
[59] LUX collaboration, D.S. Akerib et al., Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Phys. Rev. Lett.116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
[60] Q.-H. Cao, E. Ma, J. Wudka and C.P. Yuan, Multipartite dark matter, arXiv:0711.3881 [INSPIRE].
[61] Fermi-LAT collaboration, M. Ajello et al., Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope, Phys. Rev. Lett.116 (2016) 161101 [arXiv:1603.06978] [INSPIRE].
[62] SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett.112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].
[63] Bell, NF; Cai, Y.; Leane, RK, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP, 01, 051, (2016)
[64] Bell, NF; Dent, JB; Jacques, TD; Weiler, TJ, W/Z bremsstrahlung as the dominant annihilation channel for dark matter, Phys. Rev., D 83, 013001, (2011)
[65] C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys.73 (2005) 1160 [hep-ph/0412245] [INSPIRE].
[66] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
[67] Alwall, J.; etal., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP, 07, 079, (2014)
[68] Ball, RD; etal., Parton distributions with LHC data, Nucl. Phys., B 867, 244, (2013)
[69] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE]. · Zbl 1368.81015
[70] DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
[71] Brun, R.; Rademakers, F., Root — an object oriented data analysis framework, Nucl. Instrum. Methods Phys. Res., A 389, 81, (1997)
[72] ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at\( \sqrt{s}=13 \)TeV with the ATLAS detector, ATLAS-CONF-2015-062.
[73] Goodman, J.; Ibe, M.; Rajaraman, A.; Shepherd, W.; Tait, TMP; Yu, H-B, Constraints on dark matter from colliders, Phys. Rev., D 82, 116010, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.