×

zbMATH — the first resource for mathematics

Asymptotic stability in probability for stochastic Boolean networks. (English) Zbl 1373.93369
Summary: In this paper, a new class of Boolean networks, called Stochastic Boolean Networks, is presented. These systems combine some features of the classical deterministic Boolean networks (the state variables admit two operation levels, either 0 or 1) and of Probabilistic Boolean Networks (at each time instant the transition map is selected through a random process), enriching the set of admissible dynamical behaviors, thanks to the set-valued nature of the transition map. Necessary and sufficient Lyapunov conditions are given to guarantee global asymptotic stability (resp., global asymptotic stability in probability) of a given set for a deterministic Boolean network with set-valued transition map (resp., for a Stochastic Boolean Network). A constructive procedure to compute a Lyapunov function (resp., stochastic Lyapunov function) relative to a given set for a deterministic Boolean network with set-valued transition map (resp., Stochastic Boolean Network) is reported.

MSC:
93E15 Stochastic stability in control theory
93D20 Asymptotic stability in control theory
90B15 Stochastic network models in operations research
Software:
booleannet; ADAM; ARACNE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, R.; Barabási, A.-L., Dynamics of complex systems: scaling laws for the period of Boolean networks, Physical Review Letters, 84, 24, 5660-5663, (2000)
[2] Albert, R.; Othmer, H. G., The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster, Journal of Theoretical Biology, 223, 1, 1-18, (2003)
[3] Albert, I.; Thakar, J.; Li, S.; Zhang, R.; Albert, R., Boolean network simulations for life scientists, Source Code for Biology and Medicine, 3, 1-8, (2008)
[4] Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Di Bernardo, D., How to infer gene networks from expression profiles, Molecular Systems Biology, 3, 78, 1-10, (2007)
[5] Bansal, M.; Della Gatta, G.; Di Bernardo, D., Inference of gene regulatory networks and compound mode of action from time course gene expression profiles, BMC Bioinformatics, 22, 7, 815-822, (2006)
[6] Bertsekas, D. P.; Tsitsiklis, J. N., Parallel and distributed computation: numerical methods. vol. 23, (1989), Prentice hall Englewood Cliffs, NJ
[7] Bollobás, B., Modern graph theory. vol. 184, (2013), Springer Science & Business Media
[8] Bourbaki, N., General topology, (1998), Springer Verlag · Zbl 0145.19302
[9] Busetto, A.G., & Lygeros, J. (2014). Experimental design for system identification of Boolean control networks in biology. In 53rd IEEE conf. decis. control, (pp. 5704-5709).
[10] Caetano, M. A.L.; Yoneyama, T., Boolean network representation of contagion dynamics during a financial crisis, Physica A, 417, 1-6, (2015)
[11] Chaves, M.; Albert, R.; Sontag, E. D., Robustness and fragility of Boolean models for genetic regulatory networks, Journal of Theoretical Biology, 235, 3, 431-449, (2005)
[12] Cheng, D.; Qi, H., A linear representation of dynamics of Boolean networks, IEEE Transactions on Automatic Control, 55, 10, 2251-2258, (2010) · Zbl 1368.37025
[13] Conte, E.; Federici, A.; Zbilut, J. P., On a simple case of possible non-deterministic chaotic behavior in compartment theory of biological observables, Chaos, Solitons & Fractals, 22, 2, 277-284, (2004) · Zbl 1058.92001
[14] Cormen, T. H., Introduction to algorithms, (2009), MIT
[15] Datta, A.; Choudhary, A.; Bittner, M. L.; Dougherty, E. R., External control in Markovian genetic regulatory networks, Machine Learning, 52, 1-2, 169-191, (2003) · Zbl 1039.68161
[16] Easton, G.; Brooks, R. J.; Georgieva, K.; Wilkinson, I., Understanding the dynamics of industrial networks using kauffman Boolean networks, Advances in Complex Systems, 11, 1, 139-164, (2008) · Zbl 1165.90354
[17] Eisen, M. B.; Spellman, P. T.; Brown, P. O.; Botstein, D., Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, 95, 25, 14863-14868, (1998)
[18] Friedman, N.; Linial, M.; Nachman, I.; Pe’er, D., Using Bayesian networks to analyze expression data, Journal of Computational Biology, 7, 3-4, 601-620, (2000)
[19] Fristedt, B. E.; Gray, L. F., A modern approach to probability theory, (1997), Birlchäuser · Zbl 0869.60001
[20] Ghysen, A.; Thomas, R., The formation of sense organs in drosophila: a logical approach, BioEssays, 25, 8, 802-807, (2003)
[21] Goebel, R.; Sanfelice, R. G.; Teel, A. R., Hybrid dynamical systems: modeling, stability, and robustness, (2012), Princeton Univ. Press · Zbl 1241.93002
[22] Grammatico, S., Subbaraman, A., & Teel, A.R. (2013). Discrete-time stochastic control systems: examples of robustness to strictly causal perturbations. In 52nd IEEE conf. decis. control, (pp. 6403-6408). · Zbl 1358.93160
[23] Grieb, M.; Burkovski, A.; Sträng, J. E.; Kraus, J. M.; Groß, A.; Palm, G.; Kühl, M.; Kestler, H. A., Predicting variabilities in cardiac gene expression with a Boolean network incorporating uncertainty, PloS One, 10, 7, e0131832, (2015)
[24] Hamming, R. W., Error detecting and error correcting codes, Bell System Technical Journal, 29, 2, 147-160, (1950)
[25] Harris, S. E.; Sawhill, B. K.; Wuensche, A.; Kauffman, S., A model of transcriptional regulatory networks based on biases in the observed regulation rules, Complexity, 7, 4, 23-40, (2002)
[26] Heinrich, R.; Schuster, S., The regulation of cellular systems, (2012), Springer Science & Business Media
[27] Hinkelmann, F.; Brandon, M.; Guang, B.; McNeill, R.; Blekherman, G.; Veliz-Cuba, A.; Laubenbacher, R., ADAM: analysis of discrete models of biological systems using computer algebra, BMC Bioinformatics, 12, 295, 1-11, (2011)
[28] Jaynes, E. T., Probability theory: the logic of science, (2003), Cambridge Univ. press · Zbl 0732.60002
[29] Kaitala, V.; Heino, M., Complex non-unique dynamics in simple ecological interactions, Proceedings of The Royal Society of London. Series B, 263, 1373, 1011-1015, (1996)
[30] Kaitala, V.; Ylikarjula, J.; Heino, M., Non-unique population dynamics: basic patterns, Ecological Modelling, 135, 2, 127-134, (2000)
[31] Karmarkar, N., A new polynomial-time algorithm for linear programming, (ACM symp. theory comput., (1984)), 302-311 · Zbl 0557.90065
[32] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22, 3, 437-467, (1969)
[33] Kauffman, S.; Peterson, C.; Samuelsson, B.; Troein, C., Random Boolean network models and the yeast transcriptional network, Proceedings of the National Academy of Sciences, 100, 25, 14796-14799, (2003)
[34] Kaushik, A. C.; Sahi, S., Boolean network model for GPR142 against type 2 diabetes and relative dynamic change ratio analysis using systems and biological circuits approach, Systems and Synthetic Biology, 9, 1, 45-54, (2015)
[35] Khalil, H. K., Nonlinear systems, (1996), Prentice Hall · Zbl 0626.34052
[36] Lidl, R.; Niederreiter, H., Introduction to finite fields and their applications, (1994), Cambridge Univ. press · Zbl 0820.11072
[37] Luenberger, D. G., Introduction to linear and nonlinear programming. vol. 28, (1973), Addison-Wesley Reading, MA · Zbl 0241.90052
[38] Margolin, A. A.; Nemenman, I.; Basso, K.; Wiggins, C.; Stolovitzky, G.; Favera, R. D.; Califano, A., ARACNE: an algorithm for the reconstruction of gene regulatory networks in a Mammalian cellular context, BMC Bioinformatics, 7, 1, 1-15, (2006)
[39] Menini, L.; Possieri, C.; Tornambe, A., Boolean network representation of a continuous-time system and finite-horizon optimal control: application to the single-gene regulatory system for the lac operon, International Journal of Control, 90, 3, 519-552, (2017) · Zbl 1388.49042
[40] Menini, L., & Tornambe, A. (2013a). Immersion and Darboux polynomials of Boolean networks with application to the pseudomonas syringae hrp regulon. In 52nd IEEE conf. decis. control, (pp. 4092-4097).
[41] Menini, L., & Tornambe, A. (2013b). Observability and dead-beat observers for Boolean networks modeled as polynomial discrete-time systems. In 52nd IEEE conf. decis. control, (pp. 4428-4433).
[42] Pal, R.; Datta, A.; Bittner, M. L.; Dougherty, E. R., Intervention in context-sensitive probabilistic Boolean networks, BMC Bioinformatics, 21, 7, 1211-1218, (2005)
[43] Perdew, G. H.; Vanden Heuvel, J.; Peters, J. M., Regulation of gene expression, (2014), Springer
[44] Possieri, C., & Teel, A.R. (2016). Weak reachability and strong recurrence for stochastic directed graphs in terms of auxiliary functions. In 55th IEEE conf. decis. control, (pp. 3714-3719).
[45] Rockafellar, R. T.; Wets, R. J.-B., Variational analysis, (2009), Springer Science & Business Media
[46] Rosin, D. P., Dynamics of complex autonomous Boolean networks, (2015), Springer · Zbl 1305.94004
[47] Shmulevich, I.; Dougherty, E. R.; Zhang, W., Control of stationary behavior in probabilistic Boolean networks by means of structural intervention, Journal on Bioinformatics and Systems, 10, 4, 431-445, (2002) · Zbl 1099.92003
[48] Shmulevich, I.; Dougherty, E. R.; Zhang, W., Gene perturbation and intervention in probabilistic Boolean networks, BMC Bioinformatics, 18, 10, 1319-1331, (2002)
[49] Subbaraman, A.; Teel, A. R., A converse Lyapunov theorem for strong global recurrence, Automatica, 49, 10, 2963-2974, (2013) · Zbl 1358.93163
[50] Teel, A. R., Lyapunov conditions certifying stability and recurrence for a class of stochastic hybrid systems, Annual Reviews in Control, 37, 1, 1-24, (2013)
[51] Teel, A. R.; Hespanha, J. P.; Subbaraman, A., A converse Lyapunov theorem and robustness for asymptotic stability in probability, IEEE Transactions on Automatic Control, 59, 9, 2426-2441, (2014) · Zbl 1360.93640
[52] Thomas, R., Boolean formalization of genetic control circuits, Journal of Theoretical Biology, 42, 3, 563-585, (1973)
[53] Upadhyay, R. K., Multiple attractors and crisis route to chaos in a model food-chain, Chaos, Solitons and Fractals, 16, 5, 737-747, (2003) · Zbl 1033.92038
[54] Yu, J.; Smith, V. A.; Wang, P. P.; Hartemink, A. J.; Jarvis, E. D., Advances to Bayesian network inference for generating causal networks from observational biological data, BMC Bioinformatics, 20, 18, 3594-3603, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.