×

zbMATH — the first resource for mathematics

Pairwise comparison based interval analysis for group decision aiding with multiple criteria. (English) Zbl 1375.91052
Summary: Interval AHP (analytic hierarchy process) was proposed to obtain interval weights from a given pairwise comparison matrix showing relative importance between criteria. In this paper, interval AHP is applied to group decision problems. Interval AHP is first revised suitably for comparing alternatives from the viewpoint that the interval weight vector shows the set of agreeable weight vectors for the decision maker. Under individual interval weight vectors obtained from individual pairwise comparison matrices, three approaches to obtaining a consensus interval weight vector are proposed. One is the perfect incorporation approach that obtains consensus interval weight vectors including all individual interval weight vectors. By this approach, we can count out indubitably inferior alternatives. The second is the common ground approach that obtains consensus interval weight vectors included in all individual interval weight vectors. By this approach we can find agreeable group preference between alternatives when all individual opinions are similar. The third is the partial incorporation approach that obtains consensus interval weight vectors intersecting all individual interval weight vectors. By this approach we can find agreeable group preference between alternatives when individual opinions are not similar. The usefulness of the proposed three approaches is demonstrated by simple numerical examples.

MSC:
91B06 Decision theory
91B10 Group preferences
90C05 Linear programming
Software:
FVK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Saaty, T. L., The analytic hierarchy process, (1980), McGraw-Hill New York · Zbl 1176.90315
[2] van Laarhoven, P. J.M.; Pedrycz, W., A fuzzy extension of Saaty’s priority theory, Fuzzy Sets Syst., 11, 199-227, (1983) · Zbl 0528.90054
[3] Wang, Y.-M.; Elhag, T. M.S.; Hua, Z., A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process, Fuzzy Sets Syst., 157, 3055-3071, (2006) · Zbl 1114.90492
[4] Ramík, J.; Perzina, R., A method for solving fuzzy multicriteria decision problems with dependent criteria, Fuzzy Optim. Decis. Mak., 9, 2, 123-141, (2010) · Zbl 1187.90339
[5] Buckley, J. J., Fuzzy hierarchical analysis, Fuzzy Sets Syst., 17, 233-247, (1985) · Zbl 0602.90002
[6] Buckley, J. J.; Feuring, T.; Hayashi, Y., Fuzzy hierarchical analysis revisited, Eur. J. Oper. Res., 129, 48-64, (2001) · Zbl 1002.93022
[7] Csutora, R.; Buckley, J. J., Fuzzy hierarchical analysis: the lambda-MAX method, Fuzzy Sets Syst., 120, 181-195, (2001) · Zbl 0994.90078
[8] Saaty, T. L.; Vargas, L. G., Uncertainty and rank order in the analytic hierarchy process, Eur. J. Oper. Res., 32, 107-117, (1987) · Zbl 0632.90002
[9] Arbel, A., Approximate articulation of preference and priority derivation, Eur. J. Oper. Res., 43, 317-326, (1989) · Zbl 0697.90003
[10] Arbel, A.; Vargas, L. G., Preference simulation and preference programming: robustness issues in priority derivation, Eur. J. Oper. Res., 69, 200-209, (1993) · Zbl 0783.90002
[11] Arbel, A.; Vargas, L. G., Interval judgements and Euclidean centers, Math. Comput. Model., 46, 976-984, (2007) · Zbl 1173.90582
[12] Kress, M., Approximate articulation of preference and priority deviation: a comment, Eur. J. Oper. Res., 52, 382-383, (1991)
[13] Islam, R.; Biswal, M. P.; Alam, S. S., Preference programming and inconsistent interval judgements, Eur. J. Oper. Res., 97, 53-62, (1997) · Zbl 0923.90008
[14] Yu, J. R.; Hsiao, Y.-W.; Sheu, H.-J., A multiplicative approach to derive weights in the interval analytic hierarchy process, Int. J. Fuzzy Syst., 13, 3, 225-231, (2011)
[15] Mikhailov, L., Fuzzy analytical approach to partnership selection in formation of virtual enterprises, Omega, 30, 393-401, (2002)
[16] Mikhailov, L.; Tsvetinov, P., Evaluation of services using a fuzzy analytic hierarchy process, Appl. Soft Comput., 5, 23-33, (2004)
[17] Mikhailov, L., A fuzzy approach to deriving priorities from interval pairwise comparison judgments, Eur. J. Oper. Res., 159, 687-704, (2004) · Zbl 1065.90523
[18] Dopazo, E.; Lui, S. C.K.; Guisse, J., A parametric model for determining consensus priority vectors from fuzzy comparison matrices, Fuzzy Sets Syst., 246, 49-61, (2014) · Zbl 1314.91092
[19] Sugihara, K.; Tanaka, H., Interval evaluations in the analytic hierarchy process by possibilistic analysis, Comput. Intell., 17, 3, 567-579, (2001)
[20] Sugihara, K.; Ishii, H.; Tanaka, H., Interval priorities in AHP by interval regression analysis, Eur. J. Oper. Res., 158, 3, 745-754, (2004) · Zbl 1056.90093
[21] Tanaka, H.; Uejima, S.; Asai, K., Linear regression analysis with fuzzy model, IEEE Trans. Syst. Man Cybern., 12, 903-907, (1982) · Zbl 0501.90060
[22] Tanaka, H.; Nagasaka, K.; Hayashi, I., Interval regression analysis by possibilistic measures, Jpn. J. Behaviormetrics, 16, 1, 1-7, (1988), (in Japanese)
[23] Tanaka, H.; Watada, J., Possibilistic linear systems and their application to the linear regression model, Fuzzy Sets Syst., 27, 275-289, (1988) · Zbl 0662.93066
[24] Saaty, T. L., Group decision making and the AHP, (Golden, B. L.; etal., The Analytic Hierarchy Process: Applications and Studies, (1989), McGraw-Hill New York), 59-67
[25] Dyer, R. F.; Forman, E. H., Group decision support with the analytic hierarchy process, Decis. Support Syst., 8, 94-124, (1992)
[26] Forman, E.; Peniwati, K., Aggregating individual judgments and priorities with the analytic hierarchy process, Eur. J. Oper. Res., 108, 1, 165-169, (1998) · Zbl 0943.90047
[27] Brazilia, J.; Golany, B., AHP rank reversal, normalization and aggregation rules, Inf. Syst. Oper. Res., 32, 2, 14-20, (1994)
[28] Ramanathan, R.; Ganesh, L. S., Group reference aggregation methods in AHP: an evaluation and an intrinsic process for deriving members’ weightages, Eur. J. Oper. Res., 79, 2, 249-268, (1994) · Zbl 0815.90003
[29] Lopez-Ortega, O.; Rosalees, M.-A., An agent-oriented decision support system combining fuzzy clustering and the AHP, Expert Syst. Appl., 38, 8275-8284, (2011)
[30] Dong, Y.; Zhang, G.; Hong, W.-C.; Xu, Y., Consensus models for AHP group decision making under row geometric mean prioritization method, Decis. Support Syst., 49, 281-289, (2010)
[31] Bryson, N. K.; Joseph, A., Generating consensus priority point vectors: a logarithmic goal programming approach, Comput. Oper. Res., 26, 637-643, (1999) · Zbl 0933.90036
[32] Mikhailov, L., Group prioritization in the AHP by fuzzy preference programming method, Comput. Oper. Res., 31, 293-301, (2004) · Zbl 1057.90547
[33] Tanaka, H.; Sugihara, K.; Maeda, Y., Non-additive measures by interval probability functions, Inf. Sci., 164, 209-227, (2004) · Zbl 1056.28010
[34] Guo, P.; Tanaka, H., Decision making with interval probabilities, Eur. J. Oper. Res., 203, 2, 444-454, (2010) · Zbl 1177.90215
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.