×

zbMATH — the first resource for mathematics

Recent contributions to linear semi-infinite optimization. (English) Zbl 1374.90392
Summary: This paper reviews the state-of-the-art in the theory of deterministic and uncertain linear semi-infinite optimization, presents some numerical approaches to this type of problems, and describes a selection of recent applications in a variety of fields. Extensions to related optimization areas, as convex semi-infinite optimization, linear infinite optimization, and multi-objective linear semi-infinite optimization, are also commented.

MSC:
90C34 Semi-infinite programming
90C05 Linear programming
90C48 Programming in abstract spaces
Software:
RPSALG; SHOGUN; SIPAMPL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S, The relaxation method for linear inequalities, Can J Math, 6, 382-392, (1954) · Zbl 0055.35001
[2] Aliprantis C, Border K (2005) Infinite dimensional analysis: a Hitchhiker’s Guide, 3rd edn. Springer, Berlin · Zbl 1156.46001
[3] Altinel, IK; Çekyay, BÇ; Feyzioğlu, O; Keskin, ME; Özekici, S, Mission-based component testing for series systems, Ann Oper Res, 186, 1-22, (2011) · Zbl 1227.62086
[4] Altinel, IK; Çekyay, BÇ; Feyzioğlu, O; Keskin, ME; Özekici, S, The design of mission-based component test plans for series connection of subsystems, IIE Trans, 45, 1202-1220, (2013)
[5] Anderson, EJ; Lewis, AS, An extension of the simplex algorithm for semi-infinite linear programming, Math Program, 44A, 247-269, (1989) · Zbl 0682.90058
[6] Anderson EJ, Nash P (1987) Linear programming in infinite-dimensional spaces: theory and applications. Wiley, Chichester
[7] Anderson, EJ; Goberna, MA; López, MA, Simplex-like trajectories on quasi-polyhedral convex sets, Math Oper Res, 26, 147-162, (2001) · Zbl 1073.90527
[8] Audy, J-F; D’Amours, S; Rönnqvist, M, An empirical study on coalition formation and cost/savings allocation, Int J Prod Econ, 136, 13-27, (2012)
[9] Auslender, A; Goberna, MA; López, MA, Penalty and smoothing methods for convex semi-infinite programming, Math Oper Res, 34, 303-319, (2009) · Zbl 1218.90199
[10] Auslender, A; Ferrer, A; Goberna, MA; López, MA, Comparative study of RPSALG algorithms for convex semi-infinite programming, Comput Optim Appl, 60, 59-87, (2015) · Zbl 1316.90054
[11] Azé, D; Corvellec, J-N, Characterizations of error bounds for lower semicontinuous functions on metric spaces, ESAIM Control Optim Calc Var, 10, 409-425, (2004) · Zbl 1085.49019
[12] Basu, A; Martin, K; Ryan, CT, On the sufficiency of finite support duals in semi-infinite linear programming, Oper Res Lett, 42, 16-20, (2014) · Zbl 1408.90170
[13] Basu, A; Martin, K; Ryan, CT, A unified approach to semi-infinite linear programs and duality in convex programming, Math Oper Res, 40, 146-170, (2015) · Zbl 1308.90185
[14] Basu, A; Martin, K; Ryan, CT, Strong duality and sensitivity analysis in semi-infinite linear programming, Math Program, 161A, 451-485, (2017) · Zbl 1364.90322
[15] Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton, New Jersey · Zbl 1332.90321
[16] Betrò, B, An accelerated central cutting plane algorithm for linear semi-infinite programming, Math Program, 101A, 479-495, (2004) · Zbl 1073.90053
[17] Betrò, B; Ruggeri, F (ed.); Kenett, RS (ed.); Faltin, F (ed.), Bayesian robustness: theory and computation, 203-207, (2007), Chichester
[18] Betrò, B, Numerical treatment of Bayesian robustness problems, Int J Appr Reason, 50, 279-288, (2009) · Zbl 1185.62056
[19] Bisbos, CD; Ampatzis, AT, Shakedown analysis of spatial frames with parameterized load domain, Eng Struct, 303, 119-3128, (2008)
[20] Blado, D; Hu, W; Toriello, A, Semi-infinite relaxations for the dynamic knapsack problem with stochastic item sizes, SIAM J Optim, 26, 1625-1648, (2016) · Zbl 1346.90606
[21] Bodirsky, M; Jonsson, P; Oertzen, T, Essential convexity and complexity of semi-algebraic constraints, Log Methods Comput Sci, 8, 4-25, (2012) · Zbl 1253.68143
[22] Boţ, RI; Csetnek, ER; Wanka, G, Sequential optimality conditions in convex programming via perturbation approach, J Convex Anal, 15, 149-164, (2008) · Zbl 1144.90018
[23] Brosowski B (1982) Parametric semi-infinite optimization. Peter Lang, Frankfurt am Main · Zbl 0502.49001
[24] Brosowski, B, Parametric semi-infinite linear programming I. continuity of the feasible set and the optimal value, Math Program Stud, 21, 18-42, (1984) · Zbl 0547.90091
[25] Cánovas MJ, Hall JAJ, López MA, Parra J. (2017) Calmness of partially perturbed linear systems with an application to interior point methods. University Miguel Hernández of Elche, Spain. (Preprint, CL. 1432IO) · Zbl 1292.90298
[26] Cánovas, MJ; Henrion, R; Parra, J; Toledo, FJ, Critical objective size and calmness modulus in linear programming, Set-Valued Var Anal, 24, 565-579, (2016) · Zbl 1355.90097
[27] Cánovas MJ, López MA, Parra J, Toledo FJ (2018) Lipschitz modulus of fully perturbed linear programs. Pacific J Optim (to appear) · Zbl 1325.90081
[28] Cánovas, MJ; López, MA; Parra, J; Toledo, FJ, Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems, Math Program, 103A, 95-126, (2005) · Zbl 1070.65026
[29] Cánovas, MJ; López, MA; Parra, J; Toledo, FJ, Distance to solvability/unsolvability in linear optimization, SIAM J Optim, 16, 629-649, (2006) · Zbl 1097.65066
[30] Cánovas, MJ; López, MA; Parra, J; Toledo, FJ, Ill-posedness with respect to the solvability in linear optimization, Linear Algebra Appl, 416, 520-540, (2006) · Zbl 1097.65067
[31] Cánovas, MJ; López, MA; Parra, J; Toledo, FJ, Error bounds for the inverse feasible set mapping in linear semi-infinite optimization via a sensitivity dual approach, Optimization, 56, 547-563, (2007) · Zbl 1136.90040
[32] Cánovas, MJ; Hantoute, A; Parra, J; Toledo, FJ, Calmness of the argmin mapping in linear semi-infinite optimization, J Optim Theory Appl, 160, 111-126, (2014) · Zbl 1306.90161
[33] Cánovas, MJ; Kruger, AY; López, MA; Parra, J; Théra, MA, Calmness modulus of linear semi-infinite programs, SIAM J Optim, 24, 29-48, (2014) · Zbl 1374.90391
[34] Cánovas, MJ; López, MA; Parra, J; Toledo, FJ, Calmness of the feasible set mapping for linear inequality systems, Set-Valued Var Anal, 22, 375-389, (2014) · Zbl 1297.90163
[35] Cánovas, MJ; Hantoute, A; Parra, J; Toledo, FJ, Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization, Optim Lett, 9, 513-521, (2015) · Zbl 1332.90319
[36] Cánovas, MJ; Hantoute, A; Parra, J; Toledo, FJ, Calmness modulus of fully perturbed linear programs, Math Program, 158A, 267-290, (2016) · Zbl 1370.90267
[37] Cánovas, MJ; Henrion, R; López, MA; Parra, J, Outer limit of subdifferentials and calmness moduli in linear and nonlinear programming, J Optim Theory Appl, 169, 925-952, (2016) · Zbl 1342.90198
[38] Cánovas MJ, Dontchev AL, López MA, Parra J (2009) Isolated calmness of solution mappings in convex semi-infinite optimization. J Math Anal Appl 350:892-837 · Zbl 1306.90161
[39] Chan, TCY; Mar, PhA, Stability and continuity in robust optimization, SIAM J Optim, 27, 817-841, (2017) · Zbl 06724131
[40] Charnes, A; Cooper, WW; Kortanek, KO, Duality, Haar programs, and finite sequence spaces, Proc Natl Acad Sci USA, 48, 783-786, (1962) · Zbl 0105.12804
[41] Charnes, A; Cooper, WW; Kortanek, KO, Duality in semi-infinite programs and some works of Haar and Carathéodory, Manag Sci, 9, 209-228, (1963) · Zbl 0995.90615
[42] Charnes, A; Cooper, WW; Kortanek, KO, On representations of semi-infinite programs which have no duality gaps, Manag Sci, 12, 113-121, (1965) · Zbl 0143.42304
[43] Charnes, A; Cooper, WW; Kortanek, KO, On the theory of semi-infinite programming and a generalization of the Kuhn-Tucker saddle point theorem for arbitrary convex functions, Nav Res Log Quart, 16, 41-51, (1969) · Zbl 0169.22201
[44] Chu, YC, Generalization of some fundamental theorems on linear inequalities, Acta Math Sinica, 16, 25-40, (1966)
[45] Chuong, TD; Jeyakumar, V, An exact formula for radius of robus feasibility of uncertain linear programs, J Optim Theory Appl, 173, 203-226, (2017) · Zbl 1373.49035
[46] Chuong, TD; Jeyakumar, V, A generalized farkas lemma with a numerical certificate and linear semi-infinite programs with SDP duals, Linear Algebra Appl, 515, 38-52, (2017) · Zbl 1352.90060
[47] Clarke, FH, A new approach to Lagrange multipliers, Math Oper Res, 1, 165-174, (1976) · Zbl 0404.90100
[48] Correa, R; Hantoute, A; López, MA, Weaker conditions for subdifferential calculus of convex functions, J Funct Anal, 271, 1177-1212, (2016) · Zbl 1351.26022
[49] Cozad, A; Sahinidis, NV; Miller, DC, A combined first-principles and data-driven approach to model building, Comput Chem Eng, 73, 116-127, (2015)
[50] Cozman, FG; Polpo de Campos, C, Kuznetsov independence for interval-valued expectations and sets of probability distributions: properties and algorithms, Int J Appr Reason, 55, 666-682, (2014) · Zbl 1316.68174
[51] Daniilidis, A; Goberna, MA; López, MA; Lucchetti, R, Stability in linear optimization under perturbations of the left-hand side coefficients, Set-Valued Var Anal, 23, 737-758, (2015) · Zbl 1330.49023
[52] Dantzig, GB; Lenstra, JK (ed.); etal., Linear programming, 19-31, (1991), Amsterdam
[53] Daum, S; Werner, R, A novel feasible discretization method for linear semi-infinite programming applied to basket options pricing, Optimization, 60, 1379-1398, (2011) · Zbl 1230.91189
[54] Dinh N, Goberna MA, López MA, Song TQ (2007) New Farkas-type constraint qualifications in convex infinite programming. ESAIM: Control Optim Calc Var 13:580-597
[55] Dinh, N; Goberna, MA; López, MA; Volle, M, Convex inequalities without constraint qualification nor closedness condition, and their applications in optimization, Set-valued Var Anal, 18, 423-445, (2010) · Zbl 1231.90381
[56] Dolgin, Y; Zeheb, E, Model reduction of uncertain systems retaining the uncertainty structure, Syst Control Lett, 54, 771-779, (2005) · Zbl 1129.93338
[57] Dontchev AL, Rockafellar RT (2009) Implicit functions and solution mappings: a view from variational analysis. Springer, New York · Zbl 1178.26001
[58] Duffin, R; Karlovitz, LA, An infinite linear program with a duality gap, Manag Sci, 12, 122-134, (1965) · Zbl 0133.42604
[59] Dür, M; Jargalsaikhan, B; Still, G, Genericity results in linear conic programming-a tour d’horizon, Math Oper Res, 42, 77-94, (2016) · Zbl 1359.90093
[60] Eberhard A, Roshchina V, Sang T (2017) Outer limits of subdifferentials for min-max type functions. Manuscript (arXiv:1701.02852v1) [math.OC] · Zbl 1235.90167
[61] Fabian, M; Henrion, R; Kruger, AY; Outrata, J, Error bounds: necessary and sufficient conditions, Set-Valued Anal, 18, 121-149, (2010) · Zbl 1192.49018
[62] Fajardo, MD; López, MA, Locally farkas-Minkowski systems in convex semi-infinite programming, J Optim Theory Appl, 103, 313-335, (1999) · Zbl 0945.90069
[63] Fajardo, MD; López, MA, Some results about the facial geometry of convex semi-infinite systems, Optimization, 55, 661-684, (2006) · Zbl 1134.90509
[64] Fajardo, MD; López, MA; Puente, R, Linear representations and quasipolyhedrality of a finite-valued convex function, Optimization, 57, 215-237, (2008) · Zbl 1191.90086
[65] Fang, DH; Li, C; Ng, KF, Constraint qualifications for extended farkas’s lemmas and Lagrangian dualities in convex infinite programming, SIAM J Optim, 20, 1311-1332, (2009) · Zbl 1206.90198
[66] Fang, DH; Li, C; Ng, KF, Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming, Nonlinear Anal, 73, 1143-1159, (2010) · Zbl 1218.90200
[67] Faybusovich, L; Mouktonglang, T; Tsuchiya, T, Numerical experiments with universal barrier functions for cones of Chebyshev systems, Comput Optim Appl, 41, 205-223, (2008) · Zbl 1169.90424
[68] Ferrer, A; Goberna, MA; González-Gutiérrez, E; Todorov, MI, A comparative study of relaxation algorithms for the linear semi-infinite feasibility problem, Ann Oper Res, (2016) · Zbl 1382.90107
[69] Feyzioglu, O; Altinel, IK; Ozekici, S, Optimum component test plans for phased-mission systems, Eur J Oper Res, 185, 255-265, (2008) · Zbl 1137.90446
[70] Fischer, T, Contributions to semi-infinite linear optimization, Meth Verf Math Phys, 27, 175-199, (1983)
[71] Gao, SY; Sun, J; Wu, S-Y, A semi-infinite programming approach to two-stage stochastic linear programs with high-order moment constraints, Optim Lett, (2016) · Zbl 1401.90137
[72] Ghate, A; Sharma, D; Smith, RL, A shadow simplex method for infinite linear programs, Oper Res, 58, 865-877, (2010) · Zbl 1228.90151
[73] Glashoff K, Gustafson SA (1983) Linear optimization and approximation. Springer, Berlin · Zbl 0526.90058
[74] Goberna, MA; Rubinov, A (ed.); Jeyakumar, V (ed.), Linear semi-infinite optimization: recent advances, 3-22, (2005), New York · Zbl 1115.90060
[75] Goberna MA (2005b) Linear semi-infinite programming: a guided tour. IMCA Monoghaphs, Lima
[76] Goberna, MA; Kanzi, N, Optimality conditions in convex multi-objective SIP, Math Program (Ser A), (2016) · Zbl 1387.90234
[77] Goberna, MA; López, MA, Optimal value function in semi-infinite programming, J Optim Theory Appl, 59, 261-279, (1988) · Zbl 0628.90046
[78] Goberna, MA; López, MA, Topological stability of linear semi-infinite inequality systems, J Optim Theory Appl, 89, 227-236, (1998) · Zbl 0866.90128
[79] Goberna MA, López MA (1998c) Linear semi-infinite optimization. Wiley, Chichester
[80] Goberna MA, López MA (2014) Post-optimal analysis in linear semi-infinite optimization. Springer Briefs, Springer, New York · Zbl 1291.90270
[81] Goberna, MA; Todorov, MI, Primal-dual stability in continuous linear optimization, Math Program, 116B, 129-146, (2009) · Zbl 1176.90592
[82] Goberna, MA; López, MA; Todorov, MI, Stability theory for linear inequality systems, SIAM J Matrix Anal Appl, 17, 730-743, (1996) · Zbl 0864.15009
[83] Goberna, MA; López, MA; Todorov, MI, Stability theory for linear inequality systems II: upper semicontinuity of the solution set mapping, SIAM J Optim, 7, 1138-1151, (1997) · Zbl 0897.15006
[84] Goberna, MA; López, MA; Todorov, MI, On the stability of the feasible set in linear optimization, Set-Valued Anal, 9, 75-99, (2001) · Zbl 1039.90077
[85] Goberna, MA; López, MA; Todorov, MI, Extended active constraints in linear optimization with applications, SIAM J Optim, 14, 608-619, (2003) · Zbl 1046.90039
[86] Goberna, MA; Gómez, S; Guerra-Vázquez, F; Todorov, MI, Sensitivity analysis in linear semi-infinite programming: perturbing cost and right-hand-side coefficients, Eur J Oper Res, 181, 1069-1085, (2007) · Zbl 1121.90121
[87] Goberna, MA; Terlaky, T; Todorov, MI, Sensitivity analysis in linear semi-infinite programming via partitions, Math Oper Res, 35, 14-25, (2010) · Zbl 1230.90190
[88] Goberna, MA; González, E; Martinez-Legaz, JE; Todorov, MI, Motzkin decomposition of closed convex sets, J Math Anal Appl, 364, 209-221, (2010) · Zbl 1188.90195
[89] Goberna, MA; Lancho, A; Todorov, MI; Vera de Serio, VN, On implicit active constraints in linear semi-infinite programs with unbounded coefficients, Appl Math Optim, 63, 239-256, (2011) · Zbl 1220.90142
[90] Goberna, MA; Guerra-Vázquez, F; Todorov, MI, Constraint qualifications in linear vector semi-infinite optimization, Eur J Oper Res, 227, 12-21, (2013) · Zbl 1292.90298
[91] Goberna, MA; Iusem, A; Martínez-Legaz, JE; Todorov, MI, Motzkin decomposition of closed convex sets via truncation, J Math Anal Appl, 400, 35-47, (2013) · Zbl 1262.52002
[92] Goberna, MA; Jeyakumar, V; Li, G; López, MA, Robust linear semi-infinite programming duality under uncertainty, Math Program, 139B, 185-203, (2013) · Zbl 1282.90204
[93] Goberna, MA; Jeyakumar, V; Li, G; Vicente-Pérez, J, Robust solutions of multi-objective linear semi-infinite programs under constraint data uncertainty, SIAM J Optim, 24, 1402-1419, (2014) · Zbl 1325.90081
[94] Goberna, MA; López, MA; Volle, M, Primal attainment in convex infinite optimization duality, J Convex Anal, 21, 1043-1064, (2014) · Zbl 1327.90205
[95] Goberna, MA; Jeyakumar, V; Li, G; Vicente-Pérez, J, Robust solutions to multi-objective linear programs with uncertain data, Eur J Oper Res, 242, 730-743, (2015) · Zbl 1341.90124
[96] Goberna, MA; Guerra-Vázquez, F; Todorov, MI, Constraint qualifications in convex vector semi-infinite optimization, Eur J Oper Res, 249, 32-40, (2016) · Zbl 1346.90783
[97] Goberna, MA; Jeyakumar, V; Li, G; Linh, N, Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constrains, OR Lett, 44, 67-73, (2016) · Zbl 1408.90235
[98] Goberna MA, Hiriart-Urruty J.-B., López MA (2017c) Best approximate solutions of inconsistent linear inequality systems, submitted · JFM 50.0699.02
[99] Goberna MA, Jeyakumar V, Li G, Vicente-Pérez J (2017a) Radii of robust efficiency in robust multi-objective convex optimization. Submitted · Zbl 0272.90073
[100] Goberna, MA; Ridolfi, A; Vera de Serio, VN, Stability of the duality gap in linear optimization, Set-Valued Var Anal, (2017) · Zbl 1373.90073
[101] Goberna MA, López MA, Volle, M (2018) Modified Lagrangian duality for the supremum of convex functions. Pacific J Optim, to appear
[102] González-Gutiérrez, E; Todorov, MI, A relaxation method for solving systems with infinitely many linear inequalities, Optim Lett, 6, 291-298, (2012) · Zbl 1258.90092
[103] González-Gutiérrez, E; Rebollar, LA; Todorov, MI, Relaxation methods for solving linear inequality systems: converging results, Top, 20, 426-436, (2012) · Zbl 1258.49043
[104] Guo F (2015) Semidefinite programming relaxations for linear semi-infinite polynomial programming. OALib J, online (http://www.oalib.com/paper/3855833#.WSRhOdztbX4) · Zbl 1258.90092
[105] Guo, P; Huang, GH; He, L, ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty, Stoch Env Res Risk Assess, 22, 759-775, (2008)
[106] Gustafson, SA, On the computational solution of a class of generalized moment problems, SIAM J Numer Anal, 7, 343-357, (1970) · Zbl 0217.21401
[107] Gustafson, SA; Kortanek, KO, Numerical treatment of a class of semi-infinite programming problems, Nav Res Logist Quart, 20, 477-504, (1973) · Zbl 0272.90073
[108] Haar, A, Über lineare ungleichungen (in German), Acta Math Szeged, 2, 1-14, (1924) · JFM 50.0699.02
[109] Hayashi, S; Okuno, T; Ito, Y, Simplex-type algorithm for second-order cone programmes via semi-infinite programming reformulation, Optim Met Soft, 31, 1272-1297, (2016) · Zbl 1386.90076
[110] He, L; Huang, GH, Optimization of regional waste management systems based on inexact semi-infinite programming, Can J Civil Eng, 35, 987-998, (2008)
[111] He, L; Huang, GH; Lu, H, Bivariate interval semi-infinite programming with an application to environmental decision-making analysis, Eur J Oper Res, 211, 452-465, (2011) · Zbl 1237.90239
[112] Henrion R, Roemisch W (2017) Optimal scenario generation and reduction in stochastic programming. Preprint (https://www.researchgate.net/publication/316038597) · Zbl 1262.52002
[113] Hu, H; Du, D-Z (ed.); Sun, J (ed.), A projection method for solving infinite systems of linear inequalities, 186-194, (1994), Dordrecht · Zbl 0829.90127
[114] Huang, GH; He, L; Zeng, GM; Lu, HW, Identification of optimal urban solid waste flow schemes under impacts of energy prices, Env Eng Sci, 25, 685-695, (2008)
[115] Huynh, DBP; Rozza, G; Sen, S; Patera, AT, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C R Math Acad Sci Paris, 345, 473-478, (2007) · Zbl 1127.65086
[116] Ioffe, AD, Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions, SIAM J Control Optim, 17, 245-250, (1979) · Zbl 0417.49027
[117] Jeroslow, RG, Some relaxation methods for linear inequalities, Cahiers du Cero, 21, 43-53, (1979) · Zbl 0405.65036
[118] Jeyakumar, V; Li, GY; Lee, GM, A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty, Oper Res Lett, 39, 109-114, (2011) · Zbl 1218.91006
[119] Jinglai, S, Positive invariance of constrained affine dynamics and its applications to hybrid systems and safety verification, IEEE Trans Autom Control, 57, 3-18, (2012) · Zbl 1369.93450
[120] Karimi, A; Galdos, G, Fixed-order \(H_{∞ }\) controller design for nonparametric models by convex optimization, Automatica, 46, 1388-1394, (2010) · Zbl 1204.93042
[121] Kashyap, H; Ahmed, HA; Hoque, N; Roy, S; Bhattacharyya, DK, Big data analytics in bioinformatics: architectures, techniques, tools and issues, Netw Model Anal Health Inform Bioinf, 5, 28, (2016)
[122] Klabjan, D; Adelman, D, An infinite-dimensional linear programming algorithm for deterministic semi-Markov decision processes on Borel spaces, Math Oper Res, 32, 528-550, (2007) · Zbl 1279.90111
[123] Klatte D, Kummer B (2002) Nonsmooth equations in optimization: regularity, calculus, methods and applications. Kluwer, Dordrecht · Zbl 1173.49300
[124] Klatte, D; Kummer, B, Optimization methods and stability of inclusions in Banach spaces, Math Program, 117B, 305-330, (2009) · Zbl 1158.49007
[125] Kortanek, KO, Classifying convex extremum problems over linear topologies having separation properties, J Math Anal Appl, 46, 725-755, (1974) · Zbl 0283.90043
[126] Kortanek, KO; Goberna, MA (ed.); López, MA (ed.), On the 1962-1972 decade of semi-infinite programming: a subjective view, 3-34, (2001), Dordrecht · Zbl 1055.90078
[127] Kortanek, KO; Zhang, Q, Extending the mixed algebraic-analysis Fourier-Motzkin elimination method for classifying linear semi-infinite programmes, Optimization, 65, 707-727, (2016) · Zbl 1384.90111
[128] Kruger, AY; Ngai, H; Théra, M, Stability of error bounds for convex constraint systems in Banach spaces, SIAM J Optim, 20, 3280-3296, (2010) · Zbl 1208.49030
[129] Larriqueta, M; Vera de Serio, VN, On metric regularity and the boundary of the feasible set in linear optimization, Set-Valued Var Anal, 22, 1-17, (2014) · Zbl 1297.90165
[130] Lasserre, JB, An algorithm for semi-infinite polynomial optimization, Top, 20, 119-129, (2012) · Zbl 1285.90076
[131] Leibfritz, F; Maruhn, JH, A successive SDP-NSDP approach to a robust optimization problem in finance, Comput Optim Appl, 44, 443-466, (2009) · Zbl 1181.90217
[132] Li MH, Meng KW, Yang XQ (2016) On error bound moduli for locally Lipschitz and regular functions. Manuscript (arXiv:1608.03360v1) [math.OC]
[133] Li, C; Ng, KF; Pong, TK, Constraint qualifications for convex inequality systems with applications in constrained optimization, SIAM J Optim, 19, 163-187, (2008) · Zbl 1170.90009
[134] Li, X; Lu, H; He, L; Shi, B, An inexact stochastic optimization model for agricultural irrigation management with a case study in China, Stoch Env Res Risk, 28A, 281-295, (2014)
[135] Liu, Y, New constraint qualification and optimality for linear semi-infinite programing, Pac J Optim, 12, 223-232, (2016) · Zbl 1343.90100
[136] Liu, Y; Ding, MF, A ladder method for semi-infinite programming, J Ind Manag Optim, 10, 397-412, (2014) · Zbl 1281.90076
[137] Liu, Y; Goberna, MA, Asymptotic optimality conditions for linear semi-infinite programming, Optimization, 65, 387-414, (2016) · Zbl 1332.90321
[138] López, MA, Stability in linear optimization and related topics, A personal tour. Top, 20, 217-244, (2012) · Zbl 1257.90096
[139] López, MA; Still, G, Semi-infinite programming, Eur J Oper Res, 180, 491-518, (2007) · Zbl 1124.90042
[140] Lou, Y; Yin, Y; Lawphongpanich, S, Robust congestion pricing under boundedly rational user equilibrium, Transp Res Part B: Methodol, 44, 15-28, (2010)
[141] Luo, Z-Q; Roos, C; Terlaky, T, Complexity analysis of a logarithmic barrier decomposition method for semi-infinite linear programming, Appl Numer Math, 29, 379-394, (1999) · Zbl 0948.90137
[142] Mangasarian, OL, No article title, Knowledge-based linear programming. SIAM J Optim, 12, 375-382, (2004)
[143] Mangasarian, OL; Wild, EW, Nonlinear knowledge in kernel approximation, IEEE Trans Neural Netw, 18, 300-306, (2007)
[144] Mangasarian, OL; Wild, EW, Nonlinear knowledge-based classification, IEEE Trans Neural Netw, 19, 1826-1832, (2008)
[145] Martínez-Legaz, JE; Todorov, MI; Zetina, C, \(γ \) -active constraints in convex semi-infinite programming, Numer Funct Anal Appl, 35, 1078-1094, (2014) · Zbl 1295.90096
[146] Maruhn JH (2009) Robust static super-replication of barrier options. De Gruyter, Berlin · Zbl 1196.91007
[147] Miao, DY; Li, YP; Huang, GH; Yang, ZF, Optimization model for planning regional water resource systems under ucertainty, J Water Resour Plan Manag, 140, 238-249, (2014)
[148] Mordukhovich BS (2006) Variational analysis and generalized differentiation, I: basic theory. Springer, Berlin
[149] Motzkin, TS; Schoenberg, IJ, The relaxation method for linear inequalities, Can J Math, 6, 393-404, (1954) · Zbl 0055.35002
[150] Ochoa, PD; Vera Serio, VN, Stability of the primal-dual partition in linear semi-infinite programming, Optimization, 61, 1449-1465, (2012) · Zbl 1282.90205
[151] Oskoorouchi, MR; Ghaffari, HR; Terlaky, T; Aleman, DM, An interior point constraint generation algorithm for semi-infinite optimization with health-care application, Oper Res, 59, 1184-1197, (2011) · Zbl 1235.90167
[152] Ozogur, S; Weber, G-W, On numerical optimization theory of infinite kernel learning, J Global Optim, 48, 215-239, (2010) · Zbl 1198.90377
[153] Ozogur, S; Weber, G-W, Infinite kernel learning via infinite and semi-infinite programming, Optim Meth Soft, 25, 937-970, (2010) · Zbl 1225.90141
[154] Ozogur, S; Ustunkar, G; Weber, G-W, Adapted infinite kernel learning by multi-local algorithm, Int J Patt Recogn Artif Intell, 30, 1651004, (2016)
[155] Peña, J; Vera, JC; Zuluaga, LF, Static-arbitrage lower bounds on the prices of basket options via linear programming, Quant Finance, 10, 819-827, (2010) · Zbl 1204.91132
[156] Powell, MJD, Karmarkar’s algorithm: a view from nonlinear programming, Bull Inst Math Appl, 26, 165-181, (1990) · Zbl 0711.90052
[157] Prékopa, A, Inequalities for discrete higher order convex functions, J Math Inequal, 3, 485-498, (2009) · Zbl 1264.90130
[158] Prékopa, A; Ninh, A; Alexe, G, On the relationship between the discrete and continuous bounding moment problems and their numerical solutions, Ann Oper Res, 238, 521-575, (2016) · Zbl 1334.90184
[159] Priyadarsini, PI; Devarakonda, N; Babu, IR, A chock-full survey on support vector machines, Int J Adv Res Comput Sci Soft Eng, 3, 780-799, (2013)
[160] Puente, R; Vera de Serio, VN, Locally farkas-Minkowski linear semi-infinite systems, Top, 7, 103-121, (1999) · Zbl 0936.15012
[161] Remez, E, Sur la détermination des polynômes d’approximation de degré donné (in French), Commun Soc Math Kharkoff and Inst Sci Math et Mecan, 10, 41-63, (1934)
[162] Robinson, SM, Some continuity properties of polyhedral multifunctions. mathematical programming at oberwolfach (proc. conf., math. forschungsinstitut, oberwolfach, 1979), Math Program Stud, 14, 206-214, (1981) · Zbl 0449.90090
[163] Rockafellar RT, Wets RJB (1998) Variational analysis. Springer, Berlin · Zbl 0888.49001
[164] Rozza, G; Huynh, DBP; Patera, AT, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics, Arch Comput Meth Eng, 15, 229-275, (2008) · Zbl 1304.65251
[165] Rubinstein, GS, A comment on voigt’s paper “a duality theorem for linear semi-infinite programming” (in Russian), Optimization, 12, 31-32, (1981)
[166] Shani, B; Solan, E, No article title, Strong approachability. J Dyn Games, 71, 507-535, (2014) · Zbl 1403.91040
[167] Singh, C; Sarkar, S; Aram, A; Kumar, A, Cooperative profit sharing in coalition-based resource allocation in wireless networks, IEEE/ACM Trans Netw, 20B, 69-83, (2012)
[168] Sommer, B; Dingersen, T; Gamroth, C; Schneider, SE; Rubert, S; Krüger, J; Dietz, KJ, Cellmicrocosmos 2.2 membraneeditor: A modular interactive shape-based software approach to solve heterogenous membrane packing problems, J Chem Inf Model, 5, 1165-1182, (2009)
[169] Sonnenburg, S; Rätsch, G; Schäfer, C; Schölkopf, B, Large scale multiple kernel learning, J Mach Learn Res, 7, 1531-1565, (2006) · Zbl 1222.90072
[170] Stein, O, How to solve a semi-infinite optimization problem, Eur J Oper Res, 223, 312-320, (2012) · Zbl 1292.90300
[171] Suakkaphong, N; Dror, M, No article title, Managing decentralized inventory and transshipment. Top, 19, 480-506, (2011)
[172] Summerfield, NS; Dror, M, Stochastic pogramming for decentralized newsvendor with transshipment, Int J Prod Econ, 137, 292-303, (2012)
[173] Tan, M; Tsang, IW; Wang, L, Towards ultrahigh dimensional feature selection for big data, J Mach Learn Res, 15, 1371-1429, (2014) · Zbl 1318.68156
[174] Thibault, L, Sequential convex subdifferential calculus and sequential Lagrange multipliers, SIAM J Control Optim, 35, 1434-1444, (1997) · Zbl 0891.90138
[175] Tian, Y; Chen, Y (ed.); Immorlica, N (ed.), Strategy-proof and efficient ofline interval scheduling and cake, 436-437, (2013), New York · Zbl 06385637
[176] Tian, Y; Shi, Y; Liu, X, Recent advances on support vector machines research, Tech Econ Develop Econ, 18, 5-33, (2012)
[177] Todd, MJ, Interior-point algorithms for semi-infinite programming, Math Program, 65A, 217-245, (1994) · Zbl 0831.90114
[178] Todorov MI (1985/86) Generic existence and uniqueness of the solution set to linear semi-infinite optimization problems. Numer Funct Anal Optim 8:27-39 · Zbl 1136.91458
[179] Tong, X; Ling, Ch; Qi, L, A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints, J Comput Appl Math, 217, 432-447, (2008) · Zbl 1160.65029
[180] Tong X, Wu S-Yi, Zhou R, (2010) New approach for the nonlinear programming with transient stability constraints arising from power systems. Comput Optim Appl 45:495-520 · Zbl 1198.90361
[181] Tunçel, L; Todd, MJ, Asymptotic behavior of interior-point methods: a view from semi-infinite programming, Math Oper Res, 21, 354-381, (1996) · Zbl 0857.90085
[182] Uhan, NA, Stochastic linear programming games with concave preferences, Eur J Oper Res, 243, 637-646, (2015) · Zbl 1346.90649
[183] Vanderbei, RJ, Affine-scaling trajectories associated with a semi-infinite linear program, Math Oper Res, 20, 163-174, (1995) · Zbl 0835.90108
[184] Vaz, A; Fernandes, E; Gomes, M, A sequential quadratic programming with a dual parametrization approach to nonlinear semiinfinite programming, Top, 11, 109-130, (2003) · Zbl 1069.90101
[185] Vaz, A; Fernandes, E; Gomes, M, SIPAMPL: semi-infinite programming with AMPL, ACM Trans Math Soft, 30, 47-61, (2004) · Zbl 1068.90001
[186] Vercher, E, Portfolios with fuzzy returns: selection strategies based on semi-infinite programming, J Comput Appl Math, 217, 381-393, (2008) · Zbl 1136.91458
[187] Vinh, NT; Kim, DS; Tam, NN; Yen, ND, Duality gap function in infinite dimensional linear programming, J Math Anal Appl, 437, 1-15, (2016) · Zbl 1344.90071
[188] Wang, Y; Ni, H, Multivariate convex support vector regression with semi-definite programming, Knowl-Based Syst, 30, 87-94, (2012)
[189] Wu, S-Y; Li, DH; Qi, LQ; Zhou, GL, An iterative method for solving KKT system of the semi-infinite programming, Opt Meth Soft, 20, 629-643, (2005) · Zbl 1127.90410
[190] Xu, Y; Sun, W; Qi, LQ, On solving a class of linear semi-infinite programming by SDP method, Optimization, 64, 603-616, (2015) · Zbl 1311.90160
[191] Yamangil, E; Altinel, IK; Çekyay, B; Feyzioğlu, O; Özekici, S, Design of optimum component test plans in the demonstration of diverse system performance measures, IIE Trans, 43, 535-546, (2011)
[192] Yiu, KFC; Gao, MJ; Shiu, TJ; Wu, SY; Tran, T; Claesson, I, A fast algorithm for the optimal design of high accuracy windows in signal processing, Optim Meth Softw, 28, 900-916, (2013) · Zbl 1307.90187
[193] Zălinescu C (2002) Convex analysis in general vector spaces. World Scientific, Singapore · Zbl 1023.46003
[194] Zhang, L; Wu, S-Y; López, MA, A new exchange method for convex semi-infinite programming, SIAM J Optim, 20, 2959-2977, (2010) · Zbl 1229.90247
[195] Zheng, XY; Ng, KF, Metric regularity and constraint qualifications for convex inequalities on Banach spaces, SIAM J Optim, 14, 757-772, (2003) · Zbl 1079.90103
[196] Zhu, Y; Huang, GH; Li, YP; He, L; Zhang, XX, An interval full-infinite mixed-integer programming method for planning municipal energy systems: a case study of Beijing, Appl Energy, 88, 2846-2862, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.