Laforgia, Andrea; Muldoon, Martin E. Monotonicity properties of zeros of generalized Airy functions. (English) Zbl 0681.33008 Z. Angew. Math. Phys. 39, No. 2, 267-271 (1988). The generalized Airy function is a solution of the differential equation \[ (1)\quad y''+x^{\alpha}y=0,\quad x\in [0,\infty), \] where \(\alpha\) is a positive number. From the introduction: “M. S. P. Eastham conjectured that the first positive zero \(a_{\alpha 1}\) of a solution of (1) with \(y(0)=0\), decreases as \(\alpha\) increases. We show here that this decrease (to 1) occurs for all positive zeros of such a solution and indeed for all, except possibly the first of the zeros of any nontrivial solution of (1) even without the condition \(y(0)=0.\)” Reviewer: L.Littlejohn Cited in 1 ReviewCited in 1 Document MSC: 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations 34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.) Keywords:monotonicity of zeros; Airy function PDF BibTeX XML Cite \textit{A. Laforgia} and \textit{M. E. Muldoon}, Z. Angew. Math. Phys. 39, No. 2, 267--271 (1988; Zbl 0681.33008) Full Text: DOI OpenURL Digital Library of Mathematical Functions: §9.13(i) Generalizations from the Differential Equation ‣ §9.13 Generalized Airy Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions References: [1] M. Bôcher,On certain methods of Sturm and their applications to the roots of Bessel’s functions, Bull. Amer. Math. Soc.3, 205-213 (1897). · JFM 28.0409.01 [2] C. Comstock,On weighted averages at a jump discontinuity. Quart. Appl. Math.28, 159-166 (1970). · Zbl 0204.38601 [3] Á. Elbert and A. Laforgia,On the square of the zeros of Bessel functions. SIAM J. Math. Anal.15, 206-212 (1984). · Zbl 0541.33001 [4] A. Laforgia and M. E. Muldoon,Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal.14, 383-388 (1983). · Zbl 0514.33006 [5] A. Laforgia and M. E. Muldoon,Monotonicity and concavity properties of zeros of Bessel functions. J. Math. Anal. Appl.98, 470-477 (1984). · Zbl 0549.33005 [6] A. Laforgia and J. Vosmanský,Higher monotonicity properties of generalized Airy functions. Rend. Mat. (7)2, 241-256 (1984). · Zbl 0583.33009 [7] J. T. Lewis and M. E. Muldoon,Monotonicity and convexity properties of zeros of Bessel functions. SIAM J. Math. Anal.8, 171-178 (1977). · Zbl 0365.33004 [8] L. Lorch and P. Szego,Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math.109, 55-73 (1963). · Zbl 0111.06502 [9] E. Makai,On zeros of Bessel functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 602-603, 109-110 (1978). · Zbl 0434.33006 [10] R. C. McCann,Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal.8, 166-170 (1977). · Zbl 0342.33021 [11] M. E. Muldoon,Higher monotonicity properties of certain Sturm-Liouville functions V. Proc. Roy. Soc. Edinburgh Sect. A77, 23-37 (1977). · Zbl 0361.34027 [12] M. E. Muldoon,A differential equations proof of a Nicholson-type formula. Z. Angew. Math. Mech.61, 598-599 (1981). · Zbl 0475.33004 [13] M. E. Muldoon,On the zeros of some special functions: differential equations and Nicholson-type formulas. Proc. Equadiff 6, Brno, 1985; Lect. Notes in Math.1192, 155-160 (1986). [14] L. N. Nosova and S. A. Tumarkin,Tables of generalized Airy functions for the asymptotic solution of the differential equations..., translated by D. E. Brown, Pergamon-McMillan, 1965 (Russian original, Computing Centre of the Academy of Sciences of the USSR, Moscow, 1961). · Zbl 0127.09206 [15] A. D. Smirnov,Tables of Airy functions and special confluent hyper geometric functions for asymptotic solutions of differential equations of the second order, translated from the Russian by D. G. Fry, Pergamon, Oxford 1960. [16] C. A. Swanson and V. B. Headley,An extension of Airy’s equation. SIAM J. Appl. Math.15, 1400-1412 (1967). · Zbl 0161.27705 [17] G. Szegö,Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloquium Publications, vol. 23, 1975. [18] G. N. Watson,A treatise on the theory of Bessel functions, 2nd ed., Cambridge University Press, 1944. · Zbl 0063.08184 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.