Giga, Yoshikazu; Miyakawa, Tetsuro Navier-Stokes flow in \(R^ 3\) with measures as initial vorticity and Morrey spaces. (English) Zbl 0681.35072 Commun. Partial Differ. Equations 14, No. 5, 577-618 (1989). The authors study the vorticity equations, derived from the unsteady, incompressible Navier-Stokes equations, with initial data in Morrey spaces. Under suitable smallness assumptions they prove the existence of a unique smooth global solution. Reviewer: G.Warnecke Cited in 2 ReviewsCited in 126 Documents MSC: 35Q30 Navier-Stokes equations 35J25 Boundary value problems for second-order elliptic equations 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:vorticity equations; incompressible Navier-Stokes equations; Morrey spaces; smallness assumptions; global solution PDF BibTeX XML Cite \textit{Y. Giga} and \textit{T. Miyakawa}, Commun. Partial Differ. Equations 14, No. 5, 577--618 (1989; Zbl 0681.35072) Full Text: DOI OpenURL References: [1] DOI: 10.1016/0362-546X(85)90039-2 · Zbl 0621.76027 [2] Campanato S., Ricerche Mat 12 pp 67– (1963) [3] Campanato S., Ann. Scuola Norm. Sup. Pisa 17 pp 175– (1963) [4] Campanato S., Ann. Scuola Norm. Sup. Pisa 18 pp 137– (1964) [5] DOI: 10.1007/BF02414377 · Zbl 0145.36603 [6] DOI: 10.1007/BF02415082 · Zbl 0144.14101 [7] DOI: 10.1007/BF02416805 · Zbl 0183.41201 [8] Cottet G. –H., C. R. Acad. Sci. Paris 303 pp 105– (1986) [9] Federer H., Geometric measure theory (1969) · Zbl 0176.00801 [10] DOI: 10.1103/PhysRevLett.51.617 [11] Friedman A., Partial differential equations (1969) [12] DOI: 10.1007/BF00276188 · Zbl 0126.42301 [13] Giaquinta, M. 1983. ”Multiple integrals in the calculus of variations and nonlinear elliptic systems”. Vol. 105, Princeton: Princeton University Press. · Zbl 0516.49003 [14] DOI: 10.1016/0022-0396(86)90096-3 · Zbl 0577.35058 [15] Giga Y., Arch. Rational Mech. Anal [16] Giga Y.., Commun. Math. Phys [17] Gilbarg D., Elliptic partial differential equations of second order · Zbl 0361.35003 [18] DOI: 10.1512/iumj.1982.31.31016 · Zbl 0465.35049 [19] DOI: 10.1002/cpa.3160140317 · Zbl 0102.04302 [20] DOI: 10.1007/BF01162027 · Zbl 0607.35072 [21] DOI: 10.1007/BF01174182 · Zbl 0545.35073 [22] Morrey C.B., Multiple integrals in the calculus of variation (1966) · Zbl 0142.38701 [23] DOI: 10.1016/0022-1236(69)90022-6 · Zbl 0175.42602 [24] Reed M., Methods of modern mathematical physics Vol II; Fourier analysis, self-adjointness (1975) [25] DOI: 10.1080/03605308608820443 · Zbl 0607.35071 [26] Simon L., Proc. Center for Math. Anal 3 (1983) [27] Stein E.M., Introduction to Fourier analysis on Euclidean spaces (1971) [28] von Wahl W., The equations of Navier-Stokes and abstract parabolic equations (1985) · Zbl 0575.35074 [29] DOI: 10.1112/jlms/s2-35.2.303 · Zbl 0652.35095 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.