zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A second-order projection method for the incompressible Navier-Stokes equations. (English) Zbl 0681.76030
We describe a second-order projection method for the time-dependent, incompressible Navier-Stokes equations. We first solve diffusion- convection equations to predict intermediate velocities which are then projected onto the space of divergence-free vector fields. By introducing more coupling between the diffusion-convection step and the projection step we obtain a temporal discretization that is second-order accurate. Our treatment of the diffusion-convection step uses a specialized higher order Godunov method for differencing the nonlinear convective terms that provides a robust treatment of these terms at high Reynolds number. The Godunov procedure is second-order accurate for smooth flow and remains stable for discontinuous initial data, even in the zero-viscosity limit. We approximate the projection directly using a Galerkin procedure that uses a local basis for discretely divergence-free vector fields. Numerical results are presented validating the convergence properties of the method. We also apply the method to doubly periodic shear-layers to assess the performance of the method on more difficult applications.

76D05Navier-Stokes equations (fluid dynamics)
65N99Numerical methods for BVP of PDE
Full Text: DOI
[1] Ladyzhenskaya, O. A.: Mathematical problems in the dynamics of a viscous incompressible flow. (1963) · Zbl 0121.42701
[2] Fujita, H.; Kato, T.: Arch. rat. Mech. anal.. 16, 269 (1964)
[3] Temam, R.: Navier-Stokes equations. (1984) · Zbl 0568.35002
[4] Harlow, F. H.; Welch, J. E.: Phys. fluids. 8, 2182 (1965)
[5] Gresho, P. M.; Sani, R. L.: Int. J. Numer. methods fluids. 7, 1111 (1987)
[6] Krzywicki, A.; Ladyzhenskaya, O. A.: Soviet phys. Dokl.. 11, 212 (1966)
[7] Chorin, A. J.: Math. comput.. 22, 745 (1968)
[8] Chorin, A. J.: Math. comput.. 23, 341 (1969)
[9] Chorin, A. J.: Stud. num. Anal.. 2, 64 (1968)
[10] Temam, R.: Arch. rat. Mech. anal.. 32, No. 135, 377 (1969)
[11] Kim, J.; Moin, P.: J. comput. Phys.. 59, 308 (1985)
[12] Van Kan, J.: SIAM J. Sci. statist. Comput.. 7, 870 (1986)
[13] Colella, P.: A multidimensional second order Godunov scheme for conservation laws. Lbl-17023 (May 1984)
[14] Van Leer, B.: Multidimensional explicit difference schemes for hyperbolic conservation laws. Computing methods in applied sciences an engineering, VI, 493 (1984)
[15] Bell, J. B.; Dawson, C. N.; Shubin, G. R.: J. comput. Phys.. 74, 1 (1988)
[16] Stephens, A. B.; Bell, J. B.; Solomon, J. M.; Hackerman, L. B.: J. comput. Phys.. 53, 152 (1984)
[17] Russell, T. F.; Wheeler, M. F.: Finite element and finite difference methods for continuous flows in porous media. Mathematics of reservoir simulation (1984)
[18] Weiser, A.; Wheeler, M.: SIAM J. Num. anal.. 25, 351 (1988)
[19] Saltzman, J. S.: Monotone difference schemes for the linear advection equation in two and three dimensions. Laur 87-2479 (1987)
[20] Solomon, J. M.; Szymczak, W. G.: Finite difference solutions for the incompressible navierstokes equations using Galerkin techniques. Fifth IMACS international symposium on computer methods for partial differential equations (June 19--21, 1984)
[21] Bell, J. B.; Glaz, H. M.; Solomon, J. M.; Szymczak, W. G.: Application of a second-order projection method to the study of shear layers. 11th international conference on numerical methods in fluid dynamics (June 27--July 1, 1988)