## Flow in random porous media: Mathematical formulation, variational principles, and rigorous bounds.(English)Zbl 0681.76098

Summary: The problem of the slow viscous flow of a fluid through a random porous medium is considered. The macroscopic Darcy’s law, which defines the fluid permeability k, is first derived in an ensemble-average formulation using the method of homogenization. The fluid permeability is given explicitly in terms of a random boundary-value problem. General variational principles, different to ones suggested earlier, are then formulated in order to obtain rigorous upper and lower bounds on k. These variational principles are applied by evaluating them for four different types of admissible fields. Each bound is generally given in terms of various kinds of correlation functions which statistically characterize the microstructure of the medium. The upper and lower bounds are computed for flow interior and exterior to distributions of spheres.

### MSC:

 76S05 Flows in porous media; filtration; seepage 49S05 Variational principles of physics
Full Text:

### References:

 [1] DOI: 10.1063/1.444274 [2] DOI: 10.1063/1.454474 [3] DOI: 10.1063/1.866068 · Zbl 0635.76094 [4] DOI: 10.1103/PhysRevLett.52.1516 [5] DOI: 10.1143/JPSJ.40.567 · Zbl 1334.76150 [6] DOI: 10.1017/S0022112082000627 · Zbl 0515.76039 [7] DOI: 10.1063/1.1677576 [8] DOI: 10.1063/1.1726548 [9] DOI: 10.1007/BF01036523 [10] Brinkman, Appl. Sci. Res. A1 pp 27– (1947) [11] DOI: 10.1063/1.1692887 · Zbl 0222.76077 [12] DOI: 10.1063/1.449489 [13] DOI: 10.1063/1.444011 [14] DOI: 10.1063/1.456655 [15] DOI: 10.1103/PhysRevA.27.1053 [16] DOI: 10.1103/PhysRevB.33.6428 [17] DOI: 10.1063/1.866367 · Zbl 0614.76097 [18] DOI: 10.1063/1.1706246 · Zbl 0104.21402 [19] DOI: 10.1007/BF01376989 · Zbl 0402.76074 [20] DOI: 10.1017/S002211207200120X · Zbl 0229.76067 [21] DOI: 10.1017/S0022112067001326 · Zbl 0152.45101 [22] DOI: 10.1017/S0022112077001414 · Zbl 0374.76038 [23] DOI: 10.1017/S0022112059000222 · Zbl 0086.19901 [24] DOI: 10.1088/0305-4470/10/9/013 [25] DOI: 10.1007/BF01020577 [26] DOI: 10.1063/1.450727 [27] DOI: 10.1063/1.447497 [28] DOI: 10.1016/0301-9322(82)90047-7 · Zbl 0541.76041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.