×

zbMATH — the first resource for mathematics

The first international competition on computational models of argumentation: results and analysis. (English) Zbl 1419.68135
Summary: We report on the First International Competition on Computational Models of Argumentation (ICCMA’15) which took place in the first half of 2015 and focused on reasoning tasks in abstract argumentation frameworks. Performance of submitted solvers was evaluated on four computational problems wrt. four different semantics relating to the verification of the acceptance status of arguments, and computing jointly acceptable sets of arguments. In this paper, we describe the technical setup of the competition, and give an overview on the submitted solvers. Moreover, we report on the results and discuss our findings.

MSC:
68T27 Logic in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arieli, O.; Caminada, M. W.A., A QBF-based formalization of abstract argumentation semantics, J. Appl. Log., 11, 2, 229-252, (2013) · Zbl 1284.68533
[2] Audemard, G.; Lagniez, J.; Simon, L., Improving glucose for incremental SAT solving with assumptions: application to MUS extraction, (Theory and Applications of Satisfiability Testing, SAT 2013, 16th International Conference Proceedings, Helsinki, Finland, July 8-12, 2013, Lect. Notes Comput. Sci., vol. 7962, (2013), Springer), 309-317 · Zbl 1390.68587
[3] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512, (1999) · Zbl 1226.05223
[4] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410, (2011)
[5] Baroni, P.; Giacomin, M.; Guida, G., SCC-recursiveness: a general schema for argumentation semantics, Artif. Intell., 168, 1-2, 162-210, (2005) · Zbl 1132.68765
[6] Bench-Capon, T. J.M.; Dunne, P. E., Argumentation in artificial intelligence, Artif. Intell., 171, 619-641, (2007) · Zbl 1168.68560
[7] Besnard, P.; Doutre, S., Checking the acceptability of a set of arguments, (Proceedings of the 10th International Workshop on Non-Monotonic Reasoning, NMR 2004, Whistler, Canada, June 6-8, 2004, (2004)), 59-64
[8] Besnard, P.; Hunter, A., Elements of argumentation, (2008), The MIT Press
[9] Biere, A., Lingeling essentials, a tutorial on design and implementation aspects of the SAT solver lingeling, (Fifth Pragmatics of SAT Workshop, Workshop of the SAT 2014 Conference, Part of FLoC 2014 During the Vienna Summer of Logic, POS-14, July 13, 2014, Vienna, Austria, EPiC Ser. Comput., vol. 27, (2014), EasyChair), 88
[10] Bistarelli, S.; Rossi, F.; Santini, F., A first comparison of abstract argumentation systems: a computational perspective, (Cantone, D.; Asmundo, M. N., Proceedings of the 28th Italian Conference on Computational Logic, (2013)), 241-245
[11] Bistarelli, S.; Rossi, F.; Santini, F., A first comparison of abstract argumentation reasoning-tools, (ECAI 2014 - 21st European Conference on Artificial Intelligence, Including Prestigious Applications of Intelligent Systems, PAIS 2014, 18-22 August 2014, Prague, Czech Republic, (2014)), 969-970
[12] Bistarelli, S.; Rossi, F.; Santini, F., Benchmarking hard problems in random abstract AFs: the stable semantics, (Computational Models of Argument - Proceedings of COMMA 2014, (2014)), 153-160
[13] Bistarelli, S.; Rossi, F.; Santini, F., Conarg2: a constraint-based tool for abstract argumentation, (2015), in: [92], pp. 33-36
[14] Bistarelli, S.; Rossi, F.; Santini, F., A comparative test on the enumeration of extensions in abstract argumentation, Fund. Inform., 140, 3-4, 263-278, (2015) · Zbl 1348.68237
[15] Bistarelli, S.; Rossi, F.; Santini, F., Conarg: a tool for classical and weighted argumentation, (Computational Models of Argument: Proceedings of COMMA 2016, vol. 287, (2016)), 463
[16] Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; Woltran, S., Abstract dialectical frameworks revisited, (Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI’13, (2013))
[17] Brons, F., Labsat-solver: utilizing caminada’s labelling approach as a Boolean satisfiability problem, (2015), in: [92], pp. 1-3
[18] Bulmer, M. G., Principles of statistics, (1979), Dover Publications · Zbl 0183.20701
[19] Cabrio, E.; Villata, S., Node: a benchmark of natural language arguments, (Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, Front. Artif. Intell. Appl., vol. 266, (2015), IOS Press), 449-450
[20] Cabrio, E.; Villata, S.; Gandon, F., A support framework for argumentative discussions management in the web, (Proceedings of the 10th Extended Semantic Web Conference, ESWC’13, (2013), Springer-Verlag), 412-426
[21] Caminada, M., On the issue of reinstatement in argumentation, (Proceedings of the 10th European Conference on Logics in Artificial Intelligence, JELIA’06, (2006)), 111-123 · Zbl 1152.68600
[22] Caminada, M., Semi-stable semantics, (Dunne, P.; Bench-Capon, T., Proceedings of the First International Conference on Computational Models of Argument, COMMA’06, (2006), IOS Press), 121-130
[23] Cerutti, F.; Dunne, P. E.; Giacomin, M.; Vallati, M., Computing preferred extensions in abstract argumentation: a SAT-based approach, (Theory and Applications of Formal Argumentation - Second International Workshop, TAFA 2013, Beijing, China, August 3-5, 2013, Lect. Notes Comput. Sci., vol. 8306, (2013), Springer), 176-193, Revised Selected Papers · Zbl 1405.68344
[24] Cerutti, F.; Giacomin, M.; Vallati, M.; Zanella, M., An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation, (Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, (2014), AAAI Press)
[25] Cerutti, F.; Oren, N.; Strass, H.; Thimm, M.; Vallati, M., A benchmark framework for a computational argumentation competition, (Proceedings of the 5th International Conference on Computational Models of Argument, (2014)), 459-460
[26] Cerutti, F.; Vallati, M.; Giacomin, M., Argsemsat-1.0: exploiting SAT solvers in abstract argumentation, (2015), in: [92], pp. 4-7
[27] Cerutti, F.; Vallati, M.; Giacomin, M., Where are we now? state of the art and future trends of solvers for hard argumentation problems, (Computational Models of Argument - Proceedings of COMMA 2016, (2015)), 207-218
[28] Cerutti, F.; Vallati, M.; Giacomin, M., Efficient and off-the-shelf solver: jargsemsat, (Computational Models of Argument: Proceedings of COMMA 2016, vol. 287, (2016)), 465
[29] Cerutti, F.; Vallati, M.; Giacomin, M., Jargsemsat: an efficient off-the-shelf solver for abstract argumentation frameworks, (Proceedings of the Fifteenth International Conference on Principles of Knowledge Representation and Reasoning, (2016), AAAI Press), 541-544
[30] Charwat, G.; Dvorak, W.; Gaggl, S. A.; Wallner, J. P.; Woltran, S., Methods for solving reasoning problems in abstract argumentation - a survey, Artif. Intell., 220, 28-63, (2015) · Zbl 1328.68212
[31] Cohen, A.; Gottifredi, S.; Garcia, A. J.; Simari, G. R., A survey of different approaches to support in argumentation systems, Knowl. Eng. Rev., 29, 5, 513-550, (2014)
[32] Coste-Marquis, S.; Devred, C.; Marquis, P., Symmetric argumentation frameworks, (Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU’05, Lect. Notes Comput. Sci., vol. 3571, (2005), Springer), 317-328 · Zbl 1122.68642
[33] Dantsin, E.; Eiter, T.; Gottlob, G.; Voronkov, A., Complexity and expressive power of logic programming, ACM Comput. Surv., 33, 3, 374-425, (2001)
[34] Dijkstra, E. W., A note on two problems in connexion with graphs, Numer. Math., 1, 269-271, (1959) · Zbl 0092.16002
[35] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-358, (1995) · Zbl 1013.68556
[36] Dunne, P. E.; Bench-Capon, T. J.M., Coherence in finite argument systems, Artif. Intell., 141, 1-2, 187-203, (2002) · Zbl 1043.68098
[37] Dunne, P. E.; Dvořák, W.; Linsbichler, T.; Woltran, S., Characteristics of multiple viewpoints in abstract argumentation, Artif. Intell., 228, 153-178, (2015) · Zbl 1346.68184
[38] Dunne, P. E.; Hunter, A.; McBurney, P.; Parsons, S.; Wooldridge, M., Weighted argument systems: basic definitions, algorithms, and complexity results, Artif. Intell., 175, 2, 457-486, (2011) · Zbl 1216.68261
[39] Dunne, P. E.; Spanring, C.; Linsbichler, T.; Woltran, S., Investigating the relationship between argumentation semantics via signatures, (Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI’16, (2016)) · Zbl 1370.68267
[40] Dunne, P. E.; Wooldridge, M., Complexity of abstract argumentation, (Argumentation in Artificial Intelligence, (2009), Springer), 85-104, Ch. 5
[41] Dunne, P. E.; Wooldridge, M., Complexity of abstract argumentation, (Argumentation in Artificial Intelligence, (2009), Springer), 85-104
[42] Dvorák, W.; Gaggl, S. A.; Wallner, J. P.; Woltran, S., Making use of advances in answer-set programming for abstract argumentation systems, (Applications of Declarative Programming and Knowledge Management - 19th International Conference, INAP 2011, and 25th Workshop on Logic Programming, WLP 2011, Vienna, Austria, September 28-30, 2011, Lect. Notes Comput. Sci., vol. 7773, (2011), Springer), 114-133, Revised Selected Papers
[43] Dvorák, W.; Järvisalo, M.; Wallner, J. P.; Woltran, S., Complexity-sensitive decision procedures for abstract argumentation, Artif. Intell., 206, 53-78, (2014) · Zbl 1334.68206
[44] Dvořák, W., Computational aspects of abstract argumentation, (2012), Technische Universität Wien, Ph.D. thesis
[45] Dvořák, W.; Järvisalo, M.; Wallner, J. P.; Woltran, S., CEGARTIX v0.4: a SAT-based counter-example guided argumentation reasoning tool, (2015), in: [92], pp. 12-14
[46] Eén, N.; Sörensson, N., An extensible SAT-solver, (Proceedings of the International Conference on Theory and Applications of Satisfiability Testing 2004, Lect. Notes Comput. Sci., vol. 2919, (2004), Springer), 502-518 · Zbl 1204.68191
[47] Egly, U.; Gaggl, S. A.; Woltran, S., ASPARTIX: implementing argumentation frameworks using answer-set programming, (Logic Programming, Proceedings of the 24th International Conference, ICLP 2008, Udine, Italy, December 9-13, 2008, Lect. Notes Comput. Sci., vol. 5366, (2008), Springer), 734-738
[48] Egly, U.; Gaggl, S. A.; Woltran, S., Answer-set programming encodings for argumentation frameworks, Argum. Comput., 1, 2, 147-177, (2010)
[49] Egly, U.; Woltran, S., Reasoning in argumentation frameworks using quantified Boolean formulas, (Computational Models of Argument: Proceedings of COMMA 2006, September 11-12, 2006, Front. Artif. Intell. Appl., vol. 144, (2006), IOS Press Liverpool, UK), 133-144
[50] Ellmauthaler, S.; Strass, H., The DIAMOND system for computing with abstract dialectical frameworks, (Computational Models of Argument: Proceedings of COMMA 2014, (2014)), 233-240
[51] Ellmauthaler, S.; Strass, H., DIAMOND: a system for computing with abstract dialectical frameworks, (2015), in: [92], pp. 51-53
[52] Erdös, P.; Rényi, A., On random graphs I, Publ. Math., 6, 290-297, (1959) · Zbl 0092.15705
[53] Faber, W.; Woltran, S., Manifold answer-set programs for meta-reasoning, (Logic Programming and Nonmonotonic Reasoning, Proceedings of the 10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009, Lect. Notes Comput. Sci., vol. 5753, (2009), Springer), 115-128 · Zbl 1258.68029
[54] Gaggl, S. A.; Manthey, N., ASPARTIX-D: ASP argumentation reasoning tool - Dresden, (2015), in: [92], pp. 29-32
[55] Garcia, A.; Simari, G. R., Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program., 4, 1-2, 95-138, (2004) · Zbl 1090.68015
[56] Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T., Clingo = ASP + control: preliminary report, (2014), CoRR
[57] Gelfond, M.; Lifschitz, V., Classical negation in logic programs and disjunctive databases, New Gener. Comput., 9, 365-385, (1991) · Zbl 0735.68012
[58] Gordon, T. F., Carneades ICCMA: a straightforward implementation of a solver for abstract argumentation in the go programming language, (2015), in: [92], pp. 54-57
[59] Gordon, T. F.; Prakken, H.; Walton, D., The carneades model of argument and burden of proof, Artif. Intell., 171, 10-15, 875-896, (2007) · Zbl 1168.68566
[60] Grégoire, É.; Lagniez, J.; Mazure, B., An experimentally efficient method for (MSS, comss) partitioning, (Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27-31, 2014, Québec City, Québec, Canada, (2014), AAAI Press), 2666-2673
[61] Groza, S.; Groza, A., Prograph: towards enacting bipartite graphs for abstract argumentation frameworks, (2015), in: [92], pp. 49-50
[62] Guo, Q.; Liao, B., ZJU-ARG: a decomposition-based solver for abstract argumentation, (2015), in: [92], pp. 19-21
[63] Hadjisoteriou, E.; Georgiou, M., ASSA: computing stable extensions with matrices, (2015), in: [92], pp. 62-65
[64] Hadjisoteriou, E., Computing argumentation with matrices, (Proceedings of the 2015 Imperial College Computing Student Workshop, (2015)), 29
[65] Hunter, A., A probabilistic approach to modelling uncertain logical arguments, Int. J. Approx. Reason., 54, 1, 47-81, (2013) · Zbl 1266.68176
[66] Lagniez, J.-M.; Lonca, E.; Mailly, J.-G., Coquiaas: application of constraint programming for abstract argumentation, (2015), in: [92], pp. 25-28
[67] Lagniez, J. M.; Lonca, E.; Mailly, J. G., Coquiaas: a constraint-based quick abstract argumentation solver, (2015 IEEE 27th International Conference on Tools with Artificial Intelligence, JCTAI, (November 2015)), 928-935
[68] Lamatz, N., Lamatzsolver-v0.1: a grounded extension finder based on the Java-collection-framework, (2015), in: [92], pp. 45-48
[69] Lawrence, D., Genetic algorithms and simulated annealing, (1987), Pitman Publishing · Zbl 0684.68013
[70] Liao, B., Toward incremental computation of argumentation semantics: a decomposition-based approach, Ann. Math. Artif. Intell., 67, 3-4, 319-358, (2013) · Zbl 1328.03030
[71] Liao, B., Efficient computation of argumentation semantics, intelligent systems series, (2014), Academic Press
[72] Liao, B.; Jin, L.; Koons, R. C., Dynamics of argumentation systems: a division-based method, Artif. Intell., 175, 1790-1814, (2011) · Zbl 1226.68101
[73] Luce, R. D.; Perry, A. D., A method of matrix analysis of group structure, Psychometrika, 14, 1, 95-116, (1949)
[74] Modgil, S.; Caminada, M. W., Proof theories and algorithms for abstract argumentation frameworks, (Argumentation in Artificial Intelligence, (2009), Springer Publishing Company, Inc.), 105-129
[75] Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; Malik, S., Chaff: engineering an efficient SAT solver, (Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, (2001), ACM), 530-535
[76] Nieves, J. C.; Cortés, U.; Osorio, M., Preferred extensions as stable models, Theory Pract. Log. Program., 8, 4, 527-543, (2008) · Zbl 1148.68012
[77] Niskanen, A.; Wallner, J. P.; Järvisalo, M., Synthesizing argumentation frameworks from examples, (Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016, Front. Artif. Intell. Appl., vol. 285, (2016), IOS Press), 551-559 · Zbl 1403.68272
[78] Nofal, S.; Atkinson, K.; Dunne, P. E., Algorithms for decision problems in argument systems under preferred semantics, Artif. Intell., 207, 23-51, (2014) · Zbl 1334.68210
[79] Nofal, S.; Atkinson, K.; Dunne, P. E., Argtools: a backtracking-based solver for abstract argumentation, (2015), in: [92], pp. 8-11
[80] Nofal, S.; Atkinson, K.; Dunne, P. E., Looking-ahead in backtracking algorithms for abstract argumentation, Int. J. Approx. Reason., 78, 265-282, (2016) · Zbl 1386.68161
[81] Papadimitriou, C. H., Computational complexity, (1994), Addison Wesley · Zbl 0557.68033
[82] Pollock, J. L., Justification and defeat, Artif. Intell., 67, 377-407, (1994) · Zbl 0807.68085
[83] Rodrigues, O., GRIS: computing traditional argumentation semantics through numerical iterations, (2015), in: [92], pp. 37-40
[84] Rodrigues, O., Introducing eqargsolver: an argumentation solver using equational semantics, (Proceedings of the First International Workshop on Systems and Algorithms for Formal Argumentation, SAFA’2016, CEUR Workshop Proc., vol. 1672, (2016)), 22-33
[85] Ronca, A.; Wallner, J. P.; Woltran, S., ASPARTIX-V: utilizing improved ASP encodings, (2015), in: [92], pp. 22-24
[86] Silva, J. P.M.; Sakallah, K. A., GRASP - a new search algorithm for satisfiability, (ICCAD, (1996)), 220-227
[87] Simari, G. R.; Loui, R. P., A mathematical treatment of defeasible reasoning and its implementation, Artif. Intell., 53, 2-3, 125-157, (1992) · Zbl 1193.68238
[88] South, M.; Vreeswijk, G.; Fox, J., Dungine: a Java dung reasoner, (Proceedings of the 2008 Conference on Computational Models of Argument: Proceedings of COMMA 2008, (2008), IOS Press Amsterdam, The Netherlands), 360-368
[89] Sprotte, K., ASGL: argumentation semantics in gecode and lisp, (2015), in: [92], pp. 41-44
[90] Thimm, M., A probabilistic semantics for abstract argumentation, (Proceedings of the 20th European Conference on Artificial Intelligence, ECAI’12, (August 2012)) · Zbl 1327.68290
[91] Thimm, M., Tweety - a comprehensive collection of Java libraries for logical aspects of artificial intelligence and knowledge representation, (Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, KR’14, (July 2014)), 528-537
[92] (Thimm, M.; Villata, S., System Descriptions of the First International Competition on Computational Models of Argumentation, ICCMA’15, (2015)) · Zbl 1419.68135
[93] Toni, F.; Sergot, M., Argumentation and answer set programming, (Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, Lect. Notes Comput. Sci., vol. 6565, (2011), Springer), 164-180 · Zbl 1326.68279
[94] Vallati, M.; Cerutti, F.; Faber, W.; Giacomin, M., Prefmaxsat: exploiting maxsat for enumerating preferred extensions, (2015), in: [92], pp. 58-61
[95] Vallati, M.; Cerutti, F.; Giacomin, M., Argumentation frameworks features: an initial study, (Proceedings of the 21st European Conference on Artificial Intelligence, ECAI’14, (2014))
[96] van Eemeren, F. H.; Garssen, B.; Krabbe, E. C.W.; Henkemans, F. A.S.; Verheij, B.; Wagemans, J. H.M., Handbook of argumentation theory, (2014), Springer
[97] van Gijzel, B., Dungell: a reference implementation of Dung’s argumentation frameworks in Haskell, (2015), in: [92], pp. 15-18
[98] Van Gijzel, B.; Nilsson, H., A principled approach to the implementation of argumentation models, (Proceedings of the 2014 Conference on Computational Models of Argument, (2014)), 293-300
[99] Wakaki, T., Preference-based argumentation capturing prioritized logic programming, (Argumentation in Multi-Agent Systems - 7th International Workshop, ArgMAS 2010, Toronto, ON, Canada, May 10, 2010, Lect. Notes Comput. Sci., vol. 6614, (2010), Springer), 306-325, Revised Selected and Invited Papers
[100] Watts, D. J.; Strogatz, S. H., Collective dynamics of small-world networks, Nature, 393, 6684, 440-442, (1998) · Zbl 1368.05139
[101] Weissenbacher, G.; Malik, S., Boolean satisfiability solvers: techniques and extensions, (Software Safety and Security - Tools for Analysis and Verification, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 33, (2012), IOS Press), 205-253
[102] Wells, S., Argument mining: was ist das?, (Proceedings of the 14th International Workshop on Computational Models of Natural Argument, CMNA14, (2014))
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.