Causal inference in cplint. (English) Zbl 1419.68034

Summary: cplint is a suite of programs for reasoning and learning with Probabilistic Logic Programming languages that follow the distribution semantics. In this paper we describe how we have extended cplint to perform causal reasoning. In particular, we consider Pearl’s do calculus for models where all the variables are measured. The two cplint modules for inference, PITA and MCINTYRE, have been extended for computing the effect of actions/interventions on these models. We also executed experiments comparing exact and approximate inference with conditional and causal queries, showing that causal inference is often cheaper than conditional inference.


68N17 Logic programming
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI Link


[1] Pearl, J., Causality, (2000), Cambridge University Press · Zbl 0959.68116
[2] Sato, T., A statistical learning method for logic programs with distribution semantics, (Sterling, L., 12th International Conference on Logic Programming, Tokyo, Japan, (1995), MIT Press Cambridge, Massachusetts), 715-729
[3] Poole, D., The independent choice logic for modelling multiple agents under uncertainty, Artif. Intell., 94, 7-56, (1997) · Zbl 0902.03017
[4] Sato, T.; Kameya, Y., PRISM: a language for symbolic-statistical modeling, (15th International Joint Conference on Artificial Intelligence, Nagoya, Japan IJCAI-97, vol. 97, (1997)), 1330-1339
[5] Vennekens, J.; Verbaeten, S.; Bruynooghe, M., Logic programs with annotated disjunctions, (Demoen, B.; Lifschitz, V., Logic Programming: Proceedings of 20th International Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004, LNCS, vol. 3132, (2004), Springer Berlin, Heidelberg, Germany), 431-445 · Zbl 1104.68391
[6] De Raedt, L.; Kimmig, A.; Toivonen, H., Problog: a probabilistic prolog and its application in link discovery, (Veloso, M. M., 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, vol. 7, IJCAI-07, (2007), AAAI Press Palo Alto, California, USA), 2462-2467
[7] Vennekens, J.; Denecker, M.; Bruynooghe, M., CP-logic: a language of causal probabilistic events and its relation to logic programming, Theory Pract. Log. Program., 9, 3, 245-308, (2009) · Zbl 1179.68025
[8] Riguzzi, F., MCINTYRE: a Monte Carlo system for probabilistic logic programming, Fundam. Inform., 124, 4, 521-541, (2013)
[9] Poole, D., Abducing through negation as failure: stable models within the independent choice logic, J. Log. Program., 44, 1-3, 5-35, (2000) · Zbl 0957.68013
[10] Riguzzi, F., The distribution semantics for normal programs with function symbols, Int. J. Approx. Reason., 77, 1-19, (2016) · Zbl 1385.68022
[11] Wright, S., Correlation and causation, J. Agric. Res., 20, 7, 557-585, (1921)
[12] Van Gelder, A.; Ross, K. A.; Schlipf, J. S., The well-founded semantics for general logic programs, J. ACM, 38, 3, 620-650, (1991) · Zbl 0799.68045
[13] Riguzzi, F.; Swift, T., The PITA system: tabling and answer subsumption for reasoning under uncertainty, Theory Pract. Log. Program., 11, 4-5, 433-449, (2011) · Zbl 1218.68169
[14] Darwiche, A.; Marquis, P., A knowledge compilation map, J. Artif. Intell. Res., 17, 229-264, (2002) · Zbl 1045.68131
[15] Swift, T.; Warren, D. S., XSB: extending prolog with tabled logic programming, Theory Pract. Log. Program., 12, 1-2, 157-187, (2012) · Zbl 1244.68021
[16] Santos Costa, V.; Rocha, R.; Damas, L., The YAP prolog system, Theory Pract. Log. Program., 12, 1-2, 5-34, (2012) · Zbl 1244.68017
[17] Wielemaker, J.; Schrijvers, T.; Triska, M.; Lager, T., SWI-Prolog, Theory Pract. Log. Program., 12, 1-2, 67-96, (2012) · Zbl 1244.68023
[18] Holzbaur, C., Metastructures vs. attributed variables in the context of extensible unification, (Bruynooghe, M.; Wirsing, M., Programming Language Implementation and Logic Programming: Proceedings of the 4th International Symposium, PLILP’92 Leuven, Belgium, August 26-28, 1992, (1992), Springer Berlin, Heidelberg), 260-268
[19] Alberti, M.; Bellodi, E.; Cota, G.; Riguzzi, F.; Zese, R., Cplint on SWISH: probabilistic logical inference with a web browser, Intell. Artif., 11, 1, 47-64, (2017)
[20] Von Neumann, J., Various techniques used in connection with random digits, Natl. Bur. Stand., Appl. Math. Ser., 12, 36-38, (1951)
[21] Nampally, A.; Ramakrishnan, C., Adaptive MCMC-based inference in probabilistic logic programs, preprint
[22] den Broeck, G. V.; Thon, I.; van Otterlo, M.; Raedt, L. D., Dtproblog: a decision-theoretic probabilistic prolog, (Fox, M.; Poole, D., 24th AAAI Conference on Artificial Intelligence, AAAI’10, Atlanta, Georgia, USA, July 11-15, 2010, (2010), AAAI Press), 1217-1222
[23] Baral, C.; Gelfond, M.; Rushton, N., Probabilistic reasoning with answer sets, Theory Pract. Log. Program., 9, 1, 57-144, (2009) · Zbl 1170.68003
[24] Kimmig, A.; Demoen, B.; De Raedt, L.; Costa, V. S.; Rocha, R., On the implementation of the probabilistic logic programming language problog, Theory Pract. Log. Program., 11, 2-3, 235-262, (2011) · Zbl 1220.68037
[25] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512, (1999) · Zbl 1226.05223
[26] Riguzzi, F.; Bellodi, E.; Lamma, E.; Zese, R.; Cota, G., Probabilistic logic programming on the web, Softw. Pract. Exp., 46, 10, 1381-1396, (2016)
[27] Hyttinen, A.; Eberhardt, F.; Järvisalo, M., Do-calculus when the true graph is unknown, (31st International Conference on Uncertainty in Artificial Intelligence, UAI-15, (2015)), 395-404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.