Kochubei, Anatoly N.; Soskin, Daniel S. Asymptotic properties of the \(p\)-adic fractional integration operator. (English) Zbl 1389.11140 Methods Funct. Anal. Topol. 23, No. 2, 155-163 (2017). A. N. Kochubei [Pac. J. Math. 269, No. 2, 355–369 (2014; Zbl 1396.35070)] introduced a right inverse \(I^\alpha\) of Vladimirov’s fractional differentiation operator \(D^\alpha\) (\(\alpha >0\)) acting on complex-valued functions on the field of \(p\)-adic numbers. \(I^\alpha\) can be seen as a \(p\)-adic counterpart of the Riemann-Liouville fractional integral of real analysis. In this paper, the authors study asymptotic properties of \(I^\alpha f\), given the asymptotics of a function \(f\). See S. G. Samko et al. [Fractional integrals and derivatives: theory and applications. New York, NY: Gordon and Breach. xxxvi, 976 p. (1993; Zbl 0818.26003)] for results of this kind for the Riemann-Liouville integration operator. Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) 26A33 Fractional derivatives and integrals Keywords:fractional differentiation operator; fractional integration operator; \(p\)-adic numbers Citations:Zbl 0818.26003; Zbl 1396.35070 PDF BibTeX XML Cite \textit{A. N. Kochubei} and \textit{D. S. Soskin}, Methods Funct. Anal. Topol. 23, No. 2, 155--163 (2017; Zbl 1389.11140) Full Text: arXiv Link OpenURL