Viriato: a Fourier-Hermite spectral code for strongly magnetized fluid-kinetic plasma dynamics. (English) Zbl 1375.76129

Summary: We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model (KREHM) equations [the last author and A. A. Schekochihin, “Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas”, Phys. Plasmas 18, No. 10, 102309 (2011; doi:10.1063/1.3628639)] (which reduce to the standard Reduced-MHD equations in the appropriate limit) and (ii) the kinetic reduced MHD (KRMHD) equations [A. A. Schekochihin et al., “Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas”, Astrophys. J. Suppl. 182, No. 1, 310–377 (2009; doi:10.1088/0067-0049/182/1/310)]. Two main applications of these equations are magnetized (Alfvénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting (Strang or Godunov) to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field,  allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme composed of the combination of a total variation diminishing (TVD) third order Runge-Kutta method for the time derivative with a 7th order upwind scheme for the fluxes. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, including a detailed analysis of 2D and 3D Orszag-Tang-type decaying turbulence, both in fluid and kinetic regimes.


76M25 Other numerical methods (fluid mechanics) (MSC2010)
76M22 Spectral methods applied to problems in fluid mechanics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76W05 Magnetohydrodynamics and electrohydrodynamics


AstroGK; LAPACK; FFTW; Viriato
Full Text: DOI arXiv


[1] Bruno, R.; Carbone, V., The solar wind as a turbulence laboratory, Liv. Rev. Solar Phys., 2, 4, (2005), URL http://adsabs.harvard.edu/abs/2005LRSP....2....4B
[2] Elmegreen, B. G.; Scalo, J., Interstellar turbulence I: observations and processes, Annu. Rev. Astron. Astrophys., 42, 1, 211-273, (2004), URL http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.41.011802.094859
[3] Shibata, K.; Magara, T., Solar flares: magnetohydrodynamic processes, Liv. Rev. Solar Phys., 8, 6, (2011)
[4] Haisch, B.; Strong, K. T.; Rodono, M., Flares on the Sun and other stars, Annu. Rev. Astron. Astrophys., 29, 275-324, (1991)
[5] Uzdensky, D. A., Magnetic interaction between stars and accretion disks, Astrophys. Space Sci., 292, 1-4, 573-585, (2004), URL http://link.springer.com/article/10.1023/B
[6] Schindler, K., A theory of the substorm mechanism, J. Geophys. Res., 79, 2803, (1974)
[7] Wesson, J., Tokamaks, (2011), Oxford University Press · Zbl 1111.82054
[8] Frieman, E. A.; Chen, L., Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria, Phys. Fluids, 25, 502-508, (1982), URL http://adsabs.harvard.edu/abs/1982PhFl...25..502F · Zbl 0506.76133
[9] Howes, G. G.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Quataert, E.; Schekochihin, A. A., Astrophysical gyrokinetics: basic equations and linear theory, Astrophys. J., 651, 590-614, (2006), URL http://adsabs.harvard.edu/abs/2006ApJ...651..590H
[10] Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T., Gyrokinetic simulations of turbulent transport, Nucl. Fusion, 50, 4, (2010), URL http://stacks.iop.org/0029-5515/50/i=4/a=043002
[11] Krommes, J. A., The gyrokinetic description of microturbulence in magnetized plasmas, Annu. Rev. Fluid Mech., 44, 1, 175-201, (2012), URL http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-120710-101223 · Zbl 1354.76231
[12] Abel, I. G.; Plunk, G. G.; Wang, E.; Barnes, M.; Cowley, S. C.; Dorland, W.; Schekochihin, A. A., Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows, Rep. Progr. Phys., 76, 11, (2013), URL http://stacks.iop.org/0034-4885/76/i=11/a=116201
[13] Howes, G. G.; Dorland, W.; Cowley, S. C.; Hammett, G. W.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T., Kinetic simulations of magnetized turbulence in astrophysical plasmas, Phys. Rev. Lett., 100, 6, (2008), URL http://link.aps.org/doi/10.1103/PhysRevLett.100.065004
[14] Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T., Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl., 182, 1, 310, (2009), URL http://iopscience.iop.org/0067-0049/182/1/310
[15] Howes, G. G.; TenBarge, J. M.; Dorland, W.; Quataert, E.; Schekochihin, A. A.; Numata, R.; Tatsuno, T., Gyrokinetic simulations of solar wind turbulence from ion to electron scales, Phys. Rev. Lett., 107, 3, (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.035004
[16] Rogers, B. N.; Kobayashi, S.; Ricci, P.; Dorland, W.; Drake, J.; Tatsuno, T., Gyrokinetic simulations of collisionless magnetic reconnection, Phys. Plasmas, 14, 9, (2007), URL http://pop.aip.org/resource/1/phpaen/v14/i9/p092110_s1?isAuthorized=no
[17] Pueschel, M. J.; Jenko, F.; Told, D.; Büchner, J., Gyrokinetic simulations of magnetic reconnection, Phys. Plasmas, 18, 11, (2011), URL http://pop.aip.org/resource/1/phpaen/v18/i11/p112102_s1?isAuthorized=no
[18] Numata, R.; Dorland, W.; Howes, G. G.; Loureiro, N. F.; Rogers, B. N.; Tatsuno, T., Gyrokinetic simulations of the tearing instability, Phys. Plasmas, 18, 11, (2011), URL http://pop.aip.org/resource/1/phpaen/v18/i11/p112106_s1?isAuthorized=no
[19] TenBarge, J. M.; Daughton, W.; Karimabadi, H.; Howes, G. G.; Dorland, W., Collisionless reconnection in the large guide field regime: gyrokinetic versus particle-in-cell simulations, Phys. Plasmas, 21, 2, (2014), arXiv:1312.5166
[20] P.A. Muñoz, D. Told, P. Kilian, J. Büchner, F. Jenko, Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. Part I: macroscopic effects of the electron flows, ArXiv e-prints arXiv:1504.01351. URL http://adsabs.harvard.edu/abs/2015arXiv150401351M.
[21] Zocco, A.; Schekochihin, A. A., Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas, Phys. Plasmas, 18, 2309, (2011), URL http://adsabs.harvard.edu/abs/2011PhPl...18j2309Z
[22] Aschwanden, M. J.; Poland, A. I.; Rabin, D. M., The new solar corona, Annu. Rev. Astron. Astrophys., 39, 1, 175-210, (2001), URL http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.39.1.175
[23] Uzdensky, D. A., The fast collisionless reconnection condition and the self-organization of solar coronal heating, Astrophys. J., 671, 2, 2139, (2007), URL http://iopscience.iop.org/0004-637X/671/2/2139
[24] Gekelman, W.; Pfister, H.; Lucky, Z.; Bamber, J.; Leneman, D.; Maggs, J., Design, construction, and properties of the large plasma research device—the LAPD at UCLA, Rev. Sci. Instrum., 62, 12, 2875-2883, (1991), URL http://rsi.aip.org/resource/1/rsinak/v62/i12/p2875_s1?isAuthorized=no
[25] Saibene, G.; Oyama, N.; Lönnroth, J.; Andrew, Y.; Luna, E.d.l.; Giroud, C.; Huysmans, G. T.A.; Kamada, Y.; Kempenaars, M.a. H.; Loarte, A.; Donald, D. M.; Nave, M. M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H., The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments, Nucl. Fusion, 47, 8, 969, (2007), URL http://iopscience.iop.org/0029-5515/47/8/031
[26] Loureiro, N. F.; Schekochihin, A. A.; Zocco, A., Fast collisionless reconnection and electron heating in strongly magnetized plasmas, Phys. Rev. Lett., 111, (2013), URL http://link.aps.org/doi/10.1103/PhysRevLett.111.025002
[27] Kadomtsev, B. B.; Pogutse, O. P., Nonlinear helical perturbations of a plasma in the tokamak, Sov. J. Exp. Theor. Phys., 38, 283-290, (1974), URL http://adsabs.harvard.edu/abs/1974JETP...38..283K
[28] Strauss, H. R., Nonlinear, threedimensional magnetohydrodynamics of noncircular tokamaks, Phys. Fluids, 19, 1, 134-140, (1976), URL http://pof.aip.org/resource/1/pfldas/v19/i1/p134_s1
[29] Loureiro, N. F.G., Studies of nonlinear tearing mode reconnection, (2005), Imperial College London (University of London), (Ph.D.)
[30] Loureiro, N.; Hammett, G., An iterative semi-implicit scheme with robust damping, J. Comput. Phys., 227, 9, 4518-4542, (2008), URL http://www.sciencedirect.com/science/article/pii/S002199910800034X · Zbl 1388.76210
[31] Snyder, P. B.; Hammett, G. W.; Dorland, W., Landau fluid models of collisionless magnetohydrodynamics, Phys. Plasmas, 4, 11, 3974-3985, (1997), URL http://pop.aip.org/resource/1/phpaen/v4/i11/p3974_s1
[32] Schep, T. J.; Pegoraro, F.; Kuvshinov, B. N., Generalized twofluid theory of nonlinear magnetic structures, Phys. Plasmas, 1, 9, 2843-2852, (1994), URL http://pop.aip.org/resource/1/phpaen/v1/i9/p2843_s1?isAuthorized=no
[33] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67, 73-85, (1998), URL http://adsabs.harvard.edu/abs/1998MaCom..67...73G · Zbl 0897.65058
[34] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 1, 81-117, (2002), URL http://www.sciencedirect.com/science/article/pii/S002199910297021X · Zbl 1045.76029
[35] Zocco, A.; Loureiro, N. F.; Dickinson, D.; Numata, R.; Roach, C. M., Kinetic microtearing modes and reconnecting modes in strongly magnetised slab plasmas, Plasma Phys. Control. Fusion, 57, 6, (2015), URL http://stacks.iop.org/0741-3335/57/i=6/a=065008
[36] Teukolsky, S. A., Stability of the iterated Crank-Nicholson method in numerical relativity, Phys. Rev. D, 61, 8, (2000), arXiv:gr-qc/9909026
[37] Krommes, J. A., Fundamental statistical descriptions of plasma turbulence in magnetic fields, Phys. Rep., 360, 1-352, (2002), URL http://adsabs.harvard.edu/abs/2002PhR...360....1K
[38] Grant, F. C.; Feix, M. R., Fourier-Hermite solutions of the Vlasov equations in the linearized limit, Phys. Fluids, 10, 696-702, (1967), URL http://adsabs.harvard.edu/abs/1967PhFl...10..696G
[39] Grant, F. C.; Feix, M. R., Transition between Landau and Van kampen treatments of the Vlasov equation, Phys. Fluids, 10, 1356-1357, (1967), URL http://adsabs.harvard.edu/abs/1967PhFl...10.1356G
[40] Joyce, G.; Knorr, G.; Meier, H. K., Numerical integration methods of the Vlasov equation, J. Comput. Phys., 8, 1, 53-63, (1971), URL http://www.sciencedirect.com/science/article/pii/0021999171900349 · Zbl 0241.65081
[41] Knorr, G.; Shoucri, M., Plasma simulation as eigenvalue problem, J. Comput. Phys., 14, 1, 1-7, (1974), URL http://www.sciencedirect.com/science/article/pii/0021999174900011
[42] Hammett, G. W.; Beer, M. A.; Dorland, W.; Cowley, S. C.; Smith, S. A., Developments in the gyrofluid approach to tokamak turbulence simulations, Plasma Phys. Control. Fusion, 35, 8, 973, (1993), URL http://iopscience.iop.org/0741-3335/35/8/006
[43] Smith, S. A., Dissipative closures for statistical moments, fluid moments, and subgrid scales in plasma turbulence, (1997), Princeton University, URL http://w3.pppl.gov/ hammett/sasmith/thesis.html
[44] Sugama, H.; Watanabe, T.-H.; Horton, W., Collisionless kinetic-fluid closure and its application to the three-mode ion temperature gradient driven system, Phys. Plasmas, 8, 2617-2628, (2001)
[45] Hatch, D.; Jenko, F.; Navarro, A. B.; Bratanov, V., Transition between saturation regimes of gyrokinetic turbulence, Phys. Rev. Lett., 111, 17, (2013)
[46] Bratanov, V.; Jenko, F.; Hatch, D.; Brunner, S., Aspects of linear Landau damping in discretized systems, Phys. Plasmas, 20, 2, (2013)
[47] Hatch, D. R.; Jenko, F.; Bratanov, V.; Navarro, A. B.; Navarro, Phase space scales of free energy dissipation in gradient-driven gyrokinetic turbulence, J. Plasma Phys., 80, 531-551, (2014)
[48] Parker, J. T.; Dellar, P. J., Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit, J. Plasma Phys., 81, 3003, (2015), arXiv:1407.1932
[49] Kanekar, A.; Schekochihin, A. A.; Dorland, W.; Loureiro, N. F., Fluctuation-dissipation relations for a plasma-kinetic Langevin equation, J. Plasma Phys., 81, 3004, (2015), arXiv:1403.6257
[50] Plunk, G. G.; Parker, J. T., Irreversible energy flow in forced Vlasov dynamics, Eur. Phys. J. D, 68, 10, 1-9, (2014)
[51] Zocco, A., Linear collisionless Landau damping in Hilbert space, J. J. Plasma Phys., 1-7, (2015), URL http://journals.cambridge.org/article_S0022377815000331
[52] Gibelli, L.; Shizgal, B. D., Spectral convergence of the Hermite basis function solution of the Vlasov equation: the free-streaming term, J. Comput. Phys., 219, 2, 477-488, (2006) · Zbl 1189.76406
[53] Hammett, G. W.; Perkins, F. W., Fluid moment models for Landau damping with application to the ion-temperature-gradient instability, Phys. Rev. Lett., 64, 3019-3022, (1990), URL http://link.aps.org/doi/10.1103/PhysRevLett.64.3019
[54] Dorland, W.; Hammett, G. W., Gyrofluid turbulence models with kinetic effects, Phys. Fluids B, 5, 812-835, (1993)
[55] Snyder, P. B.; Hammett, G. W., A Landau fluid model for electromagnetic plasma microturbulence, Phys. Plasmas, 8, 7, 3199-3216, (2001), URL http://scitation.aip.org/content/aip/journal/pop/8/7/10.1063/1.1374238
[56] Borue, V.; Orszag, S. A., Spectra in helical three-dimensional homogeneous isotropic turbulence, Phys. Rev. E, 55, 6, 7005-7009, (1997), URL http://link.aps.org/doi/10.1103/PhysRevE.55.7005 · Zbl 0942.60101
[57] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 1, 379-397, (2007), URL http://www.sciencedirect.com/science/article/pii/S0021999107001623 · Zbl 1310.76127
[58] Godunov, S., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47, 3, 271-306, (1959), URL http://mi.mathnet.ru/eng/msb4873 · Zbl 0171.46204
[59] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517, (1968) · Zbl 0184.38503
[60] Boyd, J. P., Chebyshev and Fourier spectral methods, (2001), Courier Dover Publications · Zbl 0994.65128
[61] Orszag, S. A., On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. Atmos. Sci., 28, (1971), 1074-1074. http://dx.doi.org/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2. URL http://adsabs.harvard.edu/abs/1971JAtS...28.1074O
[62] Grafke, T.; Homann, H.; Dreher, J.; Grauer, R., Numerical simulations of possible finite time singularities in the incompressible Euler equations: comparison of numerical methods, Phys. D: Nonlinear Phenom., 237, 14-17, 1932-1936, (2008), URL http://www.sciencedirect.com/science/article/pii/S0167278907004101 · Zbl 1143.76515
[63] Hou, T. Y., Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and navier—stokes equations, Acta Numer., 18, 277-346, (2009) · Zbl 1422.76041
[64] Dellar, P. J., Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity, J. Comput. Phys., 237, 115-131, (2013), URL http://www.sciencedirect.com/science/article/pii/S0021999112007012 · Zbl 1286.76115
[65] MacCormack, R. W., The effect of viscosity in hypervelocity impact cratering, (Frontiers of Computational Fluid Dynamics, (2002), World Scientific), 27-43, arXiv:http://www.worldscientific.com/doi/pdf/10.1142/9789812810793_0002. URL http://www.worldscientific.com/doi/abs/10.1142/9789812810793_0002 · Zbl 1047.76550
[66] Jardin, S., Computational methods in plasma physics, (2010), CRC Press · Zbl 1198.76002
[67] Durran, D. R., Numerical methods for fluid dynamics: with applications to geophysics, (2010), Springer · Zbl 1214.76001
[68] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK users’guide, (1999), Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[69] Samtaney, R., Numerical aspects of drift kinetic turbulence: ill-posedness, regularization and a priori estimates of sub-grid-scale terms, Comput. Sci. Discrete, 5, 1, (2012), URL http://iopscience.iop.org/1749-4699/5/1/014004
[70] Barnes, M.; Parra, F. I.; Schekochihin, A. A., Critically balanced ion temperature gradient turbulence in fusion plasmas, Phys. Rev. Lett., 107, (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.115003
[71] Fried, B. D.; Conte, S. D., The plasma dispersion function, (1961), Academic Press New York
[72] Furth, H. P.; Killeen, J.; Rosenbluth, M. N., Finite-resistivity instabilities of a sheet pinch, Phys. Fluids, 6, 4, 459-484, (1963), URL http://pof.aip.org/resource/1/pfldas/v6/i4/p459_s1?isAuthorized=no
[73] Numata, R.; Howes, G. G.; Tatsuno, T.; Barnes, M.; Dorland, W., Astrogk: astrophysical gyrokinetics code, J. Comput. Phys., 229, 24, 9347-9372, (2010), URL http://www.sciencedirect.com/science/article/pii/S0021999110005000 · Zbl 1204.85021
[74] Militello, F.; Porcelli, F., Simple analysis of the nonlinear saturation of the tearing mode, Phys. Plasmas, 11, 5, L13-L16, (2004), URL http://pop.aip.org/resource/1/phpaen/v11/i5/pL13_s1 · Zbl 1177.85006
[75] Escande, D.; Ottaviani, M., Simple and rigorous solution for the nonlinear tearing mode, Phys. Lett. A, 323, 3-4, 278-284, (2004), URL http://www.sciencedirect.com/science/article/pii/S0375960104001781 · Zbl 1118.81343
[76] Loureiro, N. F.; Cowley, S. C.; Dorland, W. D.; Haines, M. G.; Schekochihin, A. A., X-point collapse and saturation in the nonlinear tearing mode reconnection, Phys. Rev. Lett., 95, 23, (2005), URL http://link.aps.org/doi/10.1103/PhysRevLett.95.235003
[77] Numata, R.; Loureiro, N. F., Ion and electron heating during magnetic reconnection in weakly collisional plasmas, J. Plasma Phys., 81, 3001, (2015), arXiv:1406.6456
[78] Orszag, S. A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 90, 01, 129-143, (1979)
[79] Biskamp, D.; Welter, H., Dynamics of decaying twodimensional magnetohydrodynamic turbulence, Phys. Fluids B, 1, 10, 1964-1979, (1989), URL http://pop.aip.org/resource/1/pfbpei/v1/i10/p1964_s1
[80] Politano, H.; Pouquet, A.; Sulem, P. L., Current and vorticity dynamics in threedimensional magnetohydrodynamic turbulence, Phys. Plasmas, 2, 8, 2931-2939, (1995), URL http://scitation.aip.org/content/aip/journal/pop/2/8/10.1063/1.871473
[81] Biskamp, D.; Schwarz, E., On two-dimensional magnetohydrodynamic turbulence, Phys. Plasmas, 8, 7, 3282-3292, (2001), URL http://pop.aip.org/resource/1/phpaen/v8/i7/p3282_s1?isAuthorized=no
[82] Loureiro, N. F.; Schekochihin, A. A.; Cowley, S. C., Instability of current sheets and formation of plasmoid chains, Phys. Plasmas, 14, 10, (2007), arXiv:astro-ph/0703631
[83] Loureiro, N. F.; Schekochihin, A. A.; Uzdensky, D. A., Plasmoid and Kelvin-Helmholtz instabilities in sweet-parker current sheets, Phys. Rev. E, 87, 1, (2013), arXiv:1208.0966
[84] Loureiro, N. F.; Uzdensky, D. A.; Schekochihin, A. A.; Cowley, S. C.; Yousef, T. A., Turbulent magnetic reconnection in two dimensions, Mon. Not. R. Astron. Soc., 399, (2009), L146-L146. http://dx.doi.org/10.1111/j.1745-3933.2009.00742.x. arXiv:0904.0823
[85] Iroshnikov, P. S., Turbulence of a conducting fluid in a strong magnetic field, Astron. Zh., 40, 742, (1963)
[86] Kraichnan, R. H., Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385-1387, (1965)
[87] Kinney, R.; McWilliams, J. C.; Tajima, T., Coherent structures and turbulent cascades in twodimensional incompressible magnetohydrodynamic turbulence, Phys. Plasmas, 2, 10, 3623-3639, (1995), URL http://scitation.aip.org/content/aip/journal/pop/2/10/10.1063/1.871062
[88] Goldreich, P.; Sridhar, S., Toward a theory of interstellar turbulence. 2: strong alfvénic turbulence, Astrophys. J., 438, 763-775, (1995)
[89] Bale, S.; Kellogg, P.; Mozer, F.; Horbury, T.; Reme, H., Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence, Phys. Rev. Lett., 94, (2005), URL http://link.aps.org/doi/10.1103/PhysRevLett.94.215002
[90] Alexandrova, O.; Saur, J.; Lacombe, C.; Mangeney, A.; Mitchell, J.; Schwartz, S. J.; Robert, P., Universality of solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., 103, (2009), URL http://link.aps.org/doi/10.1103/PhysRevLett.103.165003
[91] Boldyrev, S.; Perez, J. C., Spectrum of kinetic-Alfvén turbulence, Astrophys. J. Lett., 758, 2, L44, (2012), URL http://stacks.iop.org/2041-8205/758/i=2/a=L44
[92] Barnes, A., Collisionless damping of hydromagnetic waves, Phys. Fluids, 9, 1483, (1966)
[93] TenBarge, J. M.; Howes, G. G.; Dorland, W.; Hammett, G. W., An oscillating Langevin antenna for driving plasma turbulence simulations, Comput. Phys. Comm., 185, 2, 578-589, (2014), URL http://www.sciencedirect.com/science/article/pii/S0010465513003664 · Zbl 1348.76087
[94] Frigo, M.; Johnson, S. G., The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231, (2005), special issue on “Program Generation, Optimization, and Platform Adaptation”
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.