×

Quantifying the role of folding in nonautonomous flows: the unsteady double-gyre. (English) Zbl 1381.37034


MSC:

37C60 Nonautonomous smooth dynamical systems
37C10 Dynamics induced by flows and semiflows

Software:

DG-FTLE
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Alligood, K.; Sauer, T.; Yorke, J., Chaos: An Introduction to Dynamical Systems, (1996), Springer-Verlag, NY · Zbl 0867.58043
[2] Allshouse, M.; Peacock, T., Lagrangian based methods for coherent structure detection, Chaos, 25, 097617, (2015)
[3] Arrowsmith, D.; Vivaldi, F., Some p-adic representations of the Smale horseshoe, Phys. Lett. A, 176, 292-294, (1993)
[4] Balasuriya, S., Direct chaotic flux quantification in perturbed planar flows: general time-periodicity, SIAM J. Appl. Dyn. Syst., 4, 282-311, (2005) · Zbl 1136.34312
[5] Balasuriya, S., Optimal perturbation for enhanced chaotic transport, Physica D, 202, 155-176, (2005) · Zbl 1080.34028
[6] Balasuriya, S., Cross-separatrix flux in time-aperiodic and time-impulsive flows, Nonlinearity, 19, 2775-2795, (2006) · Zbl 1118.34041
[7] Balasuriya, S., A tangential displacement theory for locating perturbed saddles and their manifolds, SIAM J. Appl. Dyn. Syst., 10, 1100-1126, (2011) · Zbl 1247.34077
[8] Balasuriya, S., Ergodic Theory, Open Dynamics, and Coherent Structures, 70, Nonautonomous flows as open dynamical systems: Characterising escape rates and time-varying boundaries, 1-30, (2014), Springer · Zbl 1352.37071
[9] Balasuriya, S., Barriers and Transport in Unsteady Flows: A Melnikov Approach, (2016), SIAM Press, Philadelphia · Zbl 1354.76004
[10] Balasuriya, S., Local stable and unstable manifolds and their control in nonautonomous finite-time flows, J. Nonlin. Sci., 26, 895-927, (2016) · Zbl 1364.37067
[11] Balasuriya, S.; Ouellette, N., Hyperbolic neighborhoods as organizers of finite-time exponential stretching, APS Division of Fluid Dynamics Meeting Abstracts., (2016) · Zbl 1383.37025
[12] Balasuriya, S.; Kalampattel, R.; Ouellette, N., Hyperbolic neighbourhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807, 509-545, (2016) · Zbl 1383.37025
[13] Balibrea, F.; Snoha, L., Topological entropy of Devaney chaotic maps, Topol. Appl., 133, 225-239, (2003) · Zbl 1026.37002
[14] Battelli, F.; Lazzari, C., Exponential dichotomies, heteroclinic orbits and Melnikov functions, J. Diff. Eqs., 86, 342-366, (1986) · Zbl 0713.34055
[15] Bertozzi, A., Heteroclinic orbits and chaotic dynamics in planar fluid flows, SIAM J. Math. Anal., 19, 1271-1294, (1988) · Zbl 0656.76025
[16] Blazevski, D.; Haller, G., Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows, Physica D, 273, 46-62, (2014) · Zbl 1341.37014
[17] Bollt, E., Controlling chaos and the inverse Frobenius-Perron problem: global stabilization of arbitrary invariant measures, Int. J. Bifurcation and Chaos, 10, 1033-1050, (2000) · Zbl 1090.37512
[18] Bollt, E.; Billings, L.; Schwartz, I., A manifold independent approach to understanding transport in stochastic dynamical systems, Physica D, 173, 153-177, (2002) · Zbl 1008.37021
[19] Bollt, E.; Luttman, A.; Kramer, S.; Basnayake, R., Measurable dynamics analysis of transport in the gulf of Mexico during the oil spill, Int. J. Bifurcation and Chaos, 22, 1230012-1-12, (2012)
[20] Bollt, E.; Santitissadeekorn, N., Applied and Computational Measurable Dynamics, (2013), SIAM Press, Philadelphia · Zbl 1417.37008
[21] BozorgMagham, A.; Ross, S., Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlin. Sci. Numer. Simul., 22, 964-979, (2015)
[22] Branicki, M.; Wiggins, S., Finite-time Lagrangian transport analysis: stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents, Nonlin. Proc. Geophys., 17, 1-36, (2010)
[23] Brunton, S.; Rowley, C., Fast computation of finite-time Lyapunov exponent fields for unsteady flows, Chaos, 20, 017503, (2010) · Zbl 1311.76102
[24] Budisic, M.; Mezic, I., Geometry of the ergodic quotient reveals coherent structures in flows, Physica D, 241, 1255-1269, (2012) · Zbl 1254.37010
[25] Chen, Y., Smale horseshoe via the anti-integrability, Chaos Solit. Fract., 28, 377-385, (2006) · Zbl 1083.37028
[26] Coppel, W., Dichotomies in Stability Theory, (1978), Springer-Verlag, Berlin · Zbl 0376.34001
[27] Dellnitz, M.; Junge, O., Handbook of Dynamical Systems, 2, Set oriented numerical methods for dynamical systems, 221-264, (2002), North-Holland, Amsterdam · Zbl 1036.37030
[28] Duc, L.; Siegmund, S., Hyperbolicity and invariant manifolds for planar nonautonomous systems on finite time intervals, Int. J. Bifurcation and Chaos, 18, 641-674, (2008) · Zbl 1147.37314
[29] Farazmand, M.; Haller, G., Attracting and repelling Lagrangian coherent structures from a single computation, Chaos, 23, 023101, (2013) · Zbl 1331.37108
[30] Froyland, G.; Padberg-Gehle, K.; England, M.; Treguier, A., Detection of coherent oceanic structures via transfer operators, Phys. Rev. Lett., 98, 224503, (2007)
[31] Froyland, G.; Padberg-Gehle, K., Almost-invariant sets and invariant manifolds connecting probabilistic and geometric descriptions of coherent structures in flows, Physica D, 238, 1507-1523, (2009) · Zbl 1178.37119
[32] Froyland, G.; Santitissadeekorn, N.; Monahan, A., Transport in time-dependent dynamical systems: finite-time coherent sets, Chaos, 20, 043116, (2010) · Zbl 1311.37008
[33] Froyland, G.; Padberg-Gehle, K., Finite-time entropy: A probabilistic approach for measuring nonlinear stretching, Physica D, 241, 1612-1628, (2012) · Zbl 1253.37010
[34] Froyland, G., An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D, 250, 1-19, (2013) · Zbl 1355.37013
[35] Froyland, G.; Padberg-Gehle, K., A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, 25, 087406, (2015) · Zbl 1374.37114
[36] Gajamannage, K.; Bollt, E., Detecting phase transitions in collective motion using manifold’s curvature, Math. Biosci. Engin., 14, 437-453, (2016) · Zbl 1355.82030
[37] Garaboa-Paz, D.; Perez-Munuzuri, V., A method to calculate finite-time Lyapunov exponents for intertial particles in incompressible flows, Nonlin. Proc. Geophys., 22, 571-577, (2015)
[38] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, (1983), Springer, NY · Zbl 0515.34001
[39] Hadjighasem, A.; Karrasch, D.; Teramoto, H.; Haller, G., Spectral-clustering approach to Lagrangian vortex detection, Phys. Rev. E, 93, 063107, (2016)
[40] Haller, G.; Yuan, G., Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, 147, 352-370, (2000) · Zbl 0970.76043
[41] Haller, G., Lagrangian coherent structures, Ann. Rev. Fluid Mech., 47, 137-162, (2015)
[42] He, G.; Pan, C.; Feng, L.; Gao, Q.; Wang, J., Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, J. Fluid Mech., 792, 274-306, (2016) · Zbl 1381.76089
[43] Holmes, P., Knotted periodic orbits in suspensions of smale’s horseshoe: period multiplying and cabled knots, Physica D, 21, 7-41, (1986) · Zbl 0623.58014
[44] Holmes, P., Poincaré, celestial mechanics, dynamical-systems theory and chaos, Phys. Rep., 193, 137-163, (1990)
[45] Huntley, H.; Lipphardt, B.; Jacobs, G.; Kirwan, A., Clusters, deformation, and dilation: diagnostics for material accumulation regions, J. Geophys. Res.: Oceans, 120, 6622-6636, (2015)
[46] Johnson, P.; Meneveau, C., Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence, Phys. Fluids, 27, 085110, (2015)
[47] Ju, N.; Small, D.; Wiggins, S., Existence and computation of hyperbolic trajectories of aperiodically time dependent vector fields and their approximations, Int. J. Bifurcation and Chaos, 13, 1449-1457, (2003) · Zbl 1056.37095
[48] Karrasch, D.; Farazmand, M.; Haller, G., Attraction-based computation of hyperbolic Lagrangian coherent structures, J. Comput. Dyn., 2, 83-93, (2015) · Zbl 1353.37161
[49] Kelley, D.; Allshouse, M.; Ouellette, N., Lagrangian coherent structures separate dynamically distinct regions in fluid flows, Phys. Rev. E, 88, 013017, (2013)
[50] Lipinski, D.; Mohseni, K., A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20, 017504, (2010) · Zbl 1311.76034
[51] Ma, T.; Bollt, E., Relatively coherent sets as a hierarchical partition method, Int. J. Bifurcation and Chaos, 23, 1330026-1-17, (2013) · Zbl 1275.37007
[52] Ma, T.; Bollt, E., Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting, SIAM J. Appl. Dyn. Syst., 13, 1106-1136, (2014) · Zbl 1329.37031
[53] Ma, T.; Bollt, E., Shape coherence and finite-time curvature evolution, Int. J. Bifurcation and Chaos, 25, 1550076-1-10, (2015) · Zbl 1317.37034
[54] Ma, T.; Ouellette, N.; Bollt, E., Stretching and folding in finite time, Chaos, 26, 023112, (2016) · Zbl 1391.76173
[55] Mancho, M.; Small, D.; Wiggins, S.; Ide, K., Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields, Physica D, 182, 188-222, (2003) · Zbl 1030.37020
[56] Mancho, A.; Wiggins, S.; Curbelo, J.; Mendoza, C., Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlin. Sci. Numer. Simul., 18, 3530-3557, (2013) · Zbl 1344.37031
[57] McIlhany, K.; Wiggins, S., Eulerian indicators under continuously varying conditions, Phys. Fluids, 24, 073601, (2012)
[58] Melnikov, V., On the stability of the centre for time-periodic perturbations, Trans. Moscow Math. Soc., 12, 1-56, (1963)
[59] Mezic, I.; Loire, S.; Fonoberov, V.; Hogan, P., A new mixing diagnostic and gulf oil spill movement, Science, 330, 486-489, (2010)
[60] Mosovsky, B.; Meiss, J., Transport in transitory dynamical systems, SIAM J. Appl. Dyn. Syst., 10, 35-65, (2011) · Zbl 1233.37034
[61] Muller-Karger, C.; Mirena, A.; Lopez, J., Hyperbolic trajectories for Pick-and-place operations to elude obstacles, IEEE Trans. Robot. Automat., 16, 294-300, (2000)
[62] Namikawa, J.; Hashimoto, T., Dynamics and computation in functional shifts, Nonlinearity, 17, 1317, (2004) · Zbl 1051.68098
[63] Nelson, D.; Jacobs, G., DG-FTLE: Lagrangian coherent structures with high-order discontinuous-Galerkin methods, J. Comput. Phys., 295, 65-86, (2015) · Zbl 1349.76244
[64] Nevins, T.; Kelley, D., Optimal stretching in advection-reaction-diffusion systems, Phys. Rev. Lett., 117, 164502, (2016)
[65] Onu, K.; Huhn, F.; Haller, G., {LCS} tool: A computational platform for Lagrangian coherent structures, J. Comput. Sci., 7, 26-36, (2015)
[66] Palmer, K., Exponential dichotomies and transversal homoclinic points, J. Diff. Eqs., 55, 225-256, (1984) · Zbl 0508.58035
[67] Poje, A.; Haller, G.; Mezic, I., The geometry and statistics of mixing in aperiodic flows, Phys. Fluids, 11, 2963-2968, (1999) · Zbl 1149.76515
[68] Pratt, K.; Meiss, J.; Crimaldi, J., Reaction enhancement of initially distant scalars by Lagrangian coherent structures, Phys. Fluids, 27, 035106, (2015)
[69] Robinson, C., Dynamical Systems: Stabiliy, Symbolic Dynamics and Chaos, (1999), CRC Press
[70] Rom-Kedar, V.; Leonard, A.; Wiggins, S., An analytical study of transport, mixing and chaos in an unsteady vortical flow, J. Fluid Mech., 214, 347-394, (1990) · Zbl 0698.76028
[71] Rom-Kedar, V.; Poje, A., Universal properties of chaotic transport in the presence of diffusion, Phys. Fluids, 11, 2044-2057, (1999) · Zbl 1147.76483
[72] Rosi, G.; Walker, A.; Rival, D., Lagrangian coherent structure identification using a Voronoi tessellation-based networking algorithm, Exp. Fluids, 56, 189, (2015)
[73] Rössler, O., Horseshoe-map chaos in the Lorenz equation, Phys. Lett. A, 60, 392-394, (1977)
[74] Sattari, S.; Chen, Q.; Mitchell, K., Using heteroclinic orbits to quantify topological entropy in fluid flows, Chaos, 26, 033112, (2016) · Zbl 1361.37071
[75] Shadden, S.; Lekien, F.; Marsden, J., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212, 271-304, (2005) · Zbl 1161.76487
[76] Sudharsan, M.; Brunton, S.; Riley, J., Lagrangian coherent structures and inertial particle dynamics, Phys. Rev. E, 93, 033108, (2016)
[77] Tallapragada, P.; Ross, S., A set-oriented defintion of finite-time Lyapunov exponents and coherent sets, Commun. Nonlin. Sci. Numer. Simul., 18, 1106-1126, (2013) · Zbl 1345.37027
[78] Teramoto, H.; Haller, G.; Komatsuzaki, T., Detecting invariant manifolds as stationary LCSs in autonomous dynamical systems, Chaos, 23, 043107, (2013) · Zbl 1331.37130
[79] Tumasz, S.; Thiffeault, J., Estimating topological entropy from the motion of stirring rods, Procedia IUTAM, 7, 117-126, (2013)
[80] Vleck, E. V., Numerical shadowing near hyperbolic trajectories, SIAM J. Sci. Comput., 16, 1177-1189, (1994) · Zbl 0837.65088
[81] Wiggins, S., Chaotic Transport in Dynamical Systems, (1992), Springer-Verlag, NY · Zbl 0747.34028
[82] Wiggins, S.; Mancho, A. M., Barriers to transport in aperiodically time-dependent two-dimensional velocity fields: nekhoroshev’s theorem and “nearly invariant” tori, Nonlin. Proc. Geophys., 21, 165-185, (2014)
[83] Williams, M.; Rypina, I.; Rowley, C., Identifying finite-time coherent sets from limited quantities of Lagrangian data, Chaos, 25, 087408, (2015) · Zbl 1374.37121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.